l-l

new Hll revolution

Friday, August 9, 13 1

"~ Pobox

Ricardo Signes
rjbs@cpan.org

Moose

http://rjbs.manxome.org/talks/moose/

Friday, August 9, 13

Any
Questions!

Friday, August 9, 13
(questions about demographics of the audience)
who is using Moose? who knows they want to? who is using what Perl?

IS-ANYBODY-HERERED/GREEN-COLORBLIND?

® Moose is the new black

® Moose is the new black

Friday, August 9, 13
None of this answers the real question:

® Moose is the new black

Friday, August 9, 13
None of this answers the real question:

® Moose is the new black

® Moose is at the heart of the new revolution

Friday, August 9, 13
None of this answers the real question:

® Moose is the new black
® Moose is at the heart of the new revolution

® Moose is a game-changing tool

Friday, August 9, 13
None of this answers the real question:

Friday, August 9, 13
...what is Moose?

Moose

Friday, August 9, 13
1: who knows what traits are? when | started giving this talk, it was close to nobody

Moose

® Moose is a toolkit for writing classes

Friday, August 9, 13
1: who knows what traits are? when | started giving this talk, it was close to nobody

Moose

® Moose is a toolkit for writing classes

® with some mixin-like features'

Friday, August 9, 13
1: who knows what traits are? when | started giving this talk, it was close to nobody

Moose

® Moose is a toolkit for writing classes
® with some mixin-like features'

® and a bunch of parameter validation tools

Friday, August 9, 13
1: who knows what traits are? when | started giving this talk, it was close to nobody

7997999279797279979

, 13
t's so special about that? We have 90,000 of those already!

Perl 5's Object System

Perl 5's Object System

® bare bones - a toolkit

Perl 5's Object System

® bare bones - a toolkit

® very few assumptions

Perl 5's Object System

® bare bones - a toolkit
® very few assumptions

® allows many different strategies

Perl 5's Object System

® bare bones - a toolkit
® very few assumptions
® allows many different strategies

® this isn't always a feature

There's more than
one way to do it!

Friday, August 9, 13
For example, let's talk about object systems —- since that's what we're here to talk about.
Almost everybody provides a nice simple way to define classes.

11

There's more than
one way to do it!

...but sometimes consistency is not a bad thing either

Friday, August 9, 13 "

For example, let's talk about object systems —- since that's what we're here to talk about.
Almost everybody provides a nice simple way to define classes.

class Employee
attr_accessor
attr_accessor
end

:hame
title

Friday, August 9, 13

Ruby

12

(defclass Employee ()
((Name :accessor Name :initarg :Name)
(Title :accessor Title :initarg :Title)))

Friday, August 9, 13

Lisp

13

class Employee {
public var $name;
public var $title;

¥

Friday, August 9, 13

PHP (1)

14

class Employee {
has Str $.name;
has Str $.title;

¥

riday, August 9,
Perl 6

package Employee;
@ATTR = gw(nhame title);

sub new {

my ($class, %arg) = @_;

bless { map{; $_, $arg{$_} } @ATTR }, $class;
}

for my $attr (@ATTR) {
no strict;
*¥$attr = sub {
my $self = shift;
$self->{ $attr } = shift 1f @_;
return $self->{ $attr };
s
}

Friday, August 9, 13

Perl 5. Ugh.

So, Stevan Little was doing some design work on Perl 6, so he kept seeing this...

16

class Employee {
has Str $.name;
has Str $.title;

¥

Friday, August 9, 13 17

and all the associated nice, simple straightforward stuff, and then he'd to back to work and
see...

package Employee;
sub new { bless {} }

for my $attr (gw(hame title)) {
no strict;
*$attr = sub {
my $self = shift;
$self->{ $attr } = shift if @_;
return $self->{ $attr };
s
¥

Friday, August 9, 13 18

...this again. So, more or less, he took a bunch of the stuff cooked up by the wizards working
on Perl 6 and translated it into Perl 5, giving us Moose, where we can write this...

package Employee;

use Moose;

has name => (i1s => 'ro');
has title == (1s => 'rw');

Friday, August 9, 13
Isn't that nice?

So, before we get into how Moose works, let's have a quick review of the extreme basics of
OO in Perl... but first:

19

5 lines 21 lines
92 characters 741 characters

package Person;

package Person; v revmings.

vse Carp 'confess';

use Moose; sub new ¢

my $class = shift;
my ¥args = @_;
my $self = {};

if (exists $args{last _name}) {
has 1aSt name => (confess "Attribute (last_name) does not pass the type constraint becauvse: "
— . "Talidation failed for 'Str' with value $args{last_name}"
if ref($args{last_name});

- — 1] u -)
1 s _> rw ’ $self->{last_nane} = $args{last_name};

}

isa => 1 str 1 , } return bless $self, $class;

° sub last_name {
’ my $self = shift;

if (@_) {
my $value = shift;
confess "aAttribute (last_name) does not pass the type constraint becavse: “
. "Talidation failed for 'Str' with value $value”
if ref($value);
$self->{last_name} = $value;

}

return $self->{last_name} ;

Friday, August 9, 13 20

That's a pretty nice savings. Also, notice the typo in the right-hand side? No. Of course you
didn't!

Now, how many people here have played Dungeons and Dragons?

5 lines 21 lines
92 characters 741 characters

package Person;

package Person; v revmings.

vse Carp 'confess';

use Moose; b e |

my $class = shift;
my ¥args = @_;
my $self = {};

if (exists $args{last _name}) {

has 1aSt name => (confess Attrlpute (last_name) does not pass the type constraint becauvse:

'Talidation failed for 'Str' with value $args{last_name}"
L 1]
— $self->{1s
is > rw , }

isa => 1 str 1 , } return bless $self, $class;

° sub last_name {
’ my $self = shift;

$args{lést _name} ;

if (@_) {
my $value = shift;
confess "aAttribute (last_name) does not pass the type constraint becavse: “
. "Talidation failed for 'Str' with value $value”
if ref($value);
$self->{last_name} = $value;

}

return $self->{last_name} ;

Friday, August 9, 13 21

That's a pretty nice savings. Also, notice the typo in the right-hand side? No. Of course you
didn't!

Now, how many people here have played Dungeons and Dragons?
Who still plays? See me later!

Jeffs Gameblog
http://www.jrients.blogspot.com/

Friday, August 9, 13 23

This is one of my favorite gaming blogs. If you want to know how awesome it is, here is an
image that once appeared on every page: (ig-88) who knows this robot??

Jeff wrote a really good article about spells and spell levels.

Jeffs Gameblog
http://www.jrients.blogspot.com/

Friday, August 9, 13 23

This is one of my favorite gaming blogs. If you want to know how awesome it is, here is an
image that once appeared on every page: (ig-88) who knows this robot??

Jeff wrote a really good article about spells and spell levels.

Two Third Level Spells

Friday, August 9, 13
obviously FB is more powerful! so why is it third level?

Jeff wondered the same thing...

24

Two Third Level Spells

® Fireball

® automatic hit, big damage, stuff explodes

Friday, August 9, 13
obviously FB is more powerful! so why is it third level?

Jeff wondered the same thing...

24

Two Third Level Spells

® Fireball
® automatic hit, big damage, stuff explodes
® Flame Arrow

® roll to hit, minor damage, BYOB*

Friday, August 9, 13
obviously FB is more powerful! so why is it third level?

Jeff wondered the same thing...

24

Two Third Level Spells

® Fireball
® automatic hit, big damage, stuff explodes
® Flame Arrow

® roll to hit, minor damage, BYOB*

* bring your own bow

Friday, August 9, 13 24
obviously FB is more powerful! so why is it third level?

Jeff wondered the same thing...

4)
What do spell levels measure?

Friday, August 9, 13 25
power output doesn't work; energy input is just hand waving, no better than the science of Star Trek;

he says it's because the formula -- the stuff you need to memorize —- is of comparable complexity

why? because centuries of wizardly research has been done in the field of Fireball and now we know a
simple way to cast it; someday maybe we'll end up with a 1st level fireball —- presumably lots of wizardly
researchers are working on that right now — or a first level Wish! there's a campaign idea right there!
(thank me later)

4)
What do spell levels measure?

® power output!

Friday, August 9, 13 25
power output doesn't work; energy input is just hand waving, no better than the science of Star Trek;

he says it's because the formula -- the stuff you need to memorize —- is of comparable complexity

why? because centuries of wizardly research has been done in the field of Fireball and now we know a
simple way to cast it; someday maybe we'll end up with a 1st level fireball —- presumably lots of wizardly
researchers are working on that right now — or a first level Wish! there's a campaign idea right there!
(thank me later)

4)
What do spell levels measure?

® power output!

® energy input!

Friday, August 9, 13 25
power output doesn't work; energy input is just hand waving, no better than the science of Star Trek;

he says it's because the formula -- the stuff you need to memorize —- is of comparable complexity

why? because centuries of wizardly research has been done in the field of Fireball and now we know a
simple way to cast it; someday maybe we'll end up with a 1st level fireball —- presumably lots of wizardly
researchers are working on that right now — or a first level Wish! there's a campaign idea right there!
(thank me later)

4)
What do spell levels measure?

® power output!
® cnergy input!?

® formulaic complexity!
\§ J

Friday, August 9, 13 25
power output doesn't work; energy input is just hand waving, no better than the science of Star Trek;

he says it's because the formula -- the stuff you need to memorize —- is of comparable complexity

why? because centuries of wizardly research has been done in the field of Fireball and now we know a
simple way to cast it; someday maybe we'll end up with a 1st level fireball —- presumably lots of wizardly
researchers are working on that right now — or a first level Wish! there's a campaign idea right there!
(thank me later)

Moose

Level One
Fireball

Friday, August 9, 13 26

Moose gets us a huge number of powerful effects that are just devastating to a lot of menial,
boring problems, and the effects are incredibly simple to bring about.

Moose

Level One

Fireball
Of
Object Orientation

Friday, August 9, 13 26

Moose gets us a huge number of powerful effects that are just devastating to a lot of menial,
boring problems, and the effects are incredibly simple to bring about.

Problems with L-1 Fireball

Problems with L-1 Fireball

® now all the first level wizards have fireball

Problems with L-1 Fireball

® now all the first level wizards have fireball

® but they still think of it as level 3 spell!

Problems with L-1 Fireball

® now all the first level wizards have fireball
® but they still think of it as level 3 spell!

® they think it's more complex than it is

Problems with L-1 Fireball

® now all the first level wizards have fireball
® but they still think of it as level 3 spell!
® they think it's more complex than it is

® so they start to think it's magic

Will
the Fireball

set metal on
fire!?

riday, August 9,
No! It's just fire!

Will the

Fireball hurt my
friends, too!?

riday, August 9,
What? Of course! It's a huge ball of fire!

How will
Fireball interact
with the Charm
spell?

iday, August 9,
What the hell does that even mean?

It's just a Fireball spell!

It's just a Fireball spell!
It's not magic!

(errrr ... you know what | mean!)

Friday, August 9, 13 33

Well, Perl programmers come upon this really big weird thing, and what do they think? This
isn't Perl! This is some other crazy thing.

,' § 11 N,(\ '

INZ e ’Iu/// //

Ceci n'est pas un chameau

Friday, August 9, 13 33

Well, Perl programmers come upon this really big weird thing, and what do they think? This
isn't Perl! This is some other crazy thing.

How will
Moose interact
with arrays!?

Friday, August 9, 13
What? It's just Perl code. What?

Does Moose
support
localization?

y, AUgust 9,
Localization of what? It's just a class building toolkit!

Can | use
Moose to write

SQL!?

l... guess?

It's just a Perl library!
It's not magic!

iaay, August 9,
Whether or not this is a contradition is left to your judgement.

Ceci n'est pas un chameau

Friday, August 9, 13

So, no matter what sense of weirdness and wonder you might feel at first, just remember
that...

38

Friday, August 9, 13
Moose is just Perl code.

39

Friday, August 9, 13
Moose is just Perl code.

39

Friday, August 9, 13
Moose is just Perl code.

39

Friday, August 9, 13
Moose is just Perl code.

39

Moose is Perl

Moose is just Perl code.

39

Demystifying Moose

Friday, August 9, 13
archwizards -- you know, the guys writing Smalltalk and Lisp

The absolute most important thing | am going to tell you all afternoon is:
software is not magic, ever. It's always just software.

40

Demystifying Moose

® you'll see a lot of magic-looking features

Friday, August 9, 13
archwizards -- you know, the guys writing Smalltalk and Lisp

The absolute most important thing | am going to tell you all afternoon is:
software is not magic, ever. It's always just software.

40

Demystifying Moose

® you'll see a lot of magic-looking features

® only archwizards used to get to use them

Friday, August 9, 13 40
archwizards -- you know, the guys writing Smalltalk and Lisp

The absolute most important thing | am going to tell you all afternoon is:
software is not magic, ever. It's always just software.

Demystifying Moose

® you'll see a lot of magic-looking features
® only archwizards used to get to use them

® but now anybody can

Friday, August 9, 13 40
archwizards -- you know, the guys writing Smalltalk and Lisp

The absolute most important thing | am going to tell you all afternoon is:
software is not magic, ever. It's always just software.

Demystifying Moose

® you'll see a lot of magic-looking features
® only archwizards used to get to use them
® but now anybody can

® and they are not magic

Friday, August 9, 13 40
archwizards -- you know, the guys writing Smalltalk and Lisp

The absolute most important thing | am going to tell you all afternoon is:
software is not magic, ever. It's always just software.

Object-Orientation

Object-Orientation
Fundamentals

Friday, August 9, 13
Yeah, | left out identity. So sue me.

People make lots of different lists like this. This isn't necessarily the best one, but it's the
one that lets me explain Moose pretty well.

Object-Orientation
Fundamentals

® state

Friday, August 9, 13
Yeah, | left out identity. So sue me.

People make lots of different lists like this. This isn't necessarily the best one, but it's the
one that lets me explain Moose pretty well.

Object-Orientation
Fundamentals

® state

® behavior

Friday, August 9, 13
Yeah, | left out identity. So sue me.

People make lots of different lists like this. This isn't necessarily the best one, but it's the
one that lets me explain Moose pretty well.

Object-Orientation
Fundamentals

® state
® behavior

® code reuse

Friday, August 9, 13
Yeah, | left out identity. So sue me.

People make lots of different lists like this. This isn't necessarily the best one, but it's the
one that lets me explain Moose pretty well.

package Employee;

use strict;
use warnings;

sub name_and_title {
my ($self) = @_;

my $name $self->name;
my $title = $self->title;

return "$name, $title";

Friday, August 9, 13 43

before | start talking about the code here, let me mention a couple of uninteresting hunks of
code here

package Employee;

use strict;
use warnings;

sub name_and_title {
my ($self) = @_;

my $name $self->name;
my $title = $self->title;

return "$name, $title";

Friday, August 9, 13 44

These "use strict” and "use warnings” and "magic true value"” are not interesting. | will almost
never show them again, and you should assume that they're there unless | specifically bring it

up.

Behavior (Methods)

package Employee;

sub name_and_title {
my ($self) = @_;

my $name = $self->name;
my $title = $self->title;

return "$name, $title";

¥

State (Attributes)

package Employee;

sub title {
my $self = shift;

$self->{title} = shift if @_;

return $self->{title}
§

what about a read-only attr?

State (Attributes)

package Employee;

sub name {
my $self = shift;

return $self->{name}

¥

package Employee;

sub new {
my ($class, $arg) = @_;

my $self = {
name => $arg->{name},
title => $arg->{title},
s

bless $self => $class;

return $self;

B

Re-use (Subclassing)

package Employee: :Former;
our @ISA = gw(Employee);

sub name_and_title {
my ($self) = @_;

my $old = $self->SUPER::name_and_title;

return "$old (Former)";

¥

Friday, August 9, 13
re-use! we got all the state and behavior provided by Employee, but with overridden
behavior for this one method

Once Again, with Moose

package Employee;
use Moose;

has name => (1s => 'ro');
has title => (1s => 'rw');

sub name_and_title {
my ($self) = @_;

my $name $self->name;
my $title = $self->title;

return "$name, $title";

¥

no Moose;

Friday, August 9, 13

package Employee;
use Moose;

has name => (1s => 'ro');
has title => (1s => 'rw');

sub name_and_title {
my ($self) = @_;

my $name $self->name;
my $title = $self->title;

return "$name, $title";

¥

no Moose;

Friday, August 9, 13
This says, "Hey, I'm writing a Moose-based class now."

package Employee;
use Moose;

has name => (1s => 'ro');
has title => (1s => "'rw');

sub name_and_title {
my ($self) = @_;

my $name $self->name;
my $title = $self->title;

return "$name, $title";

¥

no Moose;

Friday, August 9, 13
So, we define two attributes. What does that mean?

use Employee;

my $peon = Employee->new({
name => 'William Toady',
title => 'Associate Assistant’,

1)

Friday, August 9, 13
First, we get "new" for free.

use Employee;

my $peon = Employee->new({
name => 'William Toady',
title => 'Associate Assistant’,

1)

$peon->title("Assistant to the Associate");

Friday, August 9, 13
and we get accessors for our attributes. title is read/write so we can update the object

use Employee;
my $peon = Employee->new({
name => 'William Toady',

title => 'Associate Assistant’,

1)

$peon->title("Assistant to the Associate");

$peon->name("William Riker");

Friday, August 9, 13
but name isn't, so when we try this...

use Employee;
my $peon = Employee->new({
name => 'William Toady',

title => 'Associate Assistant’,

1)

$peon->title("Assistant to the Associate");

$peon->name("William Riker");

Friday, August 9, 13

it dies

package Employee;
use Moose;

has name => (is => 'ro');
has title => (is => 'rw');

sub name_and_title {
my ($self) = @_;

my $name $self->name;
my $title = $self->title;

return "$name, $title";

¥

no Moose;

Friday, August 9, 13
Methods look the same.

package Employee;
use Moose;

has name => (is => 'ro');
has title => (is => 'rw');

sub name_and_title {
my ($self) = @_;

my $name $self->name;
my $title = $self->title;

return "$name, $title";

¥

no Moose;

Friday, August 9, 13

59
This makes sure that helper functions like "has" aren't left around to be accidentally called as

methods later. I'll often skip "no Moose" usually, too. If | show you something and say it's a
class, you can probably assume that "no Moose" can be assumed along with the magic true

value.

| don't usually write "no Moose" in my code, anyway. | use a different tool to clean up all
those functions...

package Employee;
use Moose;

my $employee = Employee->new(...);

has nhame =>

has title =
As RLEIE = $employee->has(...);

sub name_and_title {
my ($self) = @_;

my $name = $self->name;
my $title = $self->title;

return "$name, $title";

¥

no Moose;

Friday, August 9, 13

This makes sure that helper functions like "has" aren't left around to be accidentally called as
methods later. I'll often skip "no Moose" usually, too. If | show you something and say it's a
class, you can probably assume that "no Moose" can be assumed along with the magic true

59

value.

| don't usually write "no Moose" in my code, anyway. | use a different tool to clean up all
those functions...

package Employee;
use Moose;

use namespace: :autoclean;

has name => (is => 'ro');
has title => (is => 'rw');

sub name_and_title {
my ($self) = @_;

my $name $self->name;
my $title = $self->title;

return "$name, $title";

¥

Friday, August 9, 13
namespace::autoclean waits until all my code is done compiling, then removes all the

routines that got added by everything else. This cleans up Moose's imports as well as other
helpers that I've brought in. We'll see why this is so useful later.

Anyway, | won't be putting *this* on every slide, either.

package Employee: :Former;
use Moose;
extends 'Employee';

sub name_and_title {
my ($self) = @_;

my $old = $self->SUPER::name_and_title;

return "$old (Former)";

¥

Friday, August 9, 13
We're makin' a subclass now!

package Employee: :Former;
use Moose;
extends 'Employee';

sub name_and_title {
my ($self) = @_;

my $old = $self->SUPER::name_and_title;

return "$old (Former)";

package Employee: :Former;
use Moose;
extends 'Employee';

sub name_and_title {
my ($self) = @_;

my $old = $self->SUPER::name_and_title;

return "$old (Former)";

¥

Friday, August 9, 13
and then just the method that calls super —- but | wouldn't really suggest writing this;

instead, | would write this...

package Employee: :Former;
use Moose;
extends 'Employee';

override name_and_title => sub {
my ($self) = @_;

my $old = super;

return "$old (Former)";

s

package Employee: :Former;
use Moose;
extends 'Employee';

override name_and_title => sub {
my ($self) = @_;

my $old = super;

return "$old (Former)";

s

Friday, August 9, 13
Among other things, by doing this, Moose will throw if our superclass has no

"name_and_title" method to be overridden, alerting us to stupid mistakes at compile time.

package Employee: :Former;
use Moose;
extends 'Employee';

override name_and_title => sub {
my ($self) = @_;

my $old = super;

return "$old (Former)";

s

Friday, August 9, 13 66

This is prettier than ->SUPER::, but it also helps avoid various weird and annoying bugs. If
you've never been bitten by those sorts of bugs, you are lucky!

package Employee: :Former;
use Moose;
extends 'Employee';

override name_and_title => sub {
my ($self) = @_;

my $old = super;

return "$old (Former)";

s

Friday, August 9, 13 67
Since we're not making a named sub, we're just calling a function. We need to terminate our
statement. Forgetting that semicolon is a common mistake. | make it daily.

package Employee: :Former;
use Moose;
extends 'Employee';

override name_and_title => sub {
my ($self) = @_;

my $old = super;

return "$old (Former)";

} —

Friday, August 9, 13 67
Since we're not making a named sub, we're just calling a function. We need to terminate our
statement. Forgetting that semicolon is a common mistake. | make it daily.

package Employee;
use Moose;

has name => (1s => 'ro');
has title => (1s => 'rw');

sub name_and_title {
my ($self) = @_;

$self->name;
$self->title;

my $name
my $title

return "$name, $title";

¥

Friday, August 9, 13

Okay. Let's talk about what these guys are all about...

has name => (1s => 'ro');

has title => (is => 'rw');

Friday, August 9, 13 69
"has" is a routine that adds an attribute —- a slot for state —- to our class. we pass it a name
(like name or title) and then a hash of options describing the attribute; here, we're only
providing one option: whether it "is" read-only or read-write

"has"” doesn't just set up state —- it's also setting up behavior, in the method we use to get at
the data. in our super-vanilla implementation, we wrote this:

sub title {
my $self = shift;

$self->{title} = shift if @_;

return $self->{titlet}
§

sub name {
my $self = shift;

return $self->{namet}

¥

Friday, August 9, 13 70
This is what we'd shown as read-write and read-only accessors in stock Perl. The version we
get from Moose is even better, because it will notice when you try to set a read-only value
like name and will throw an exception. You could do that in plain ol' Perl, too... if you

remember... every time.

has name => (1s => 'ro');

has title => (is => 'rw');

Friday, August 9, 13 71

So, we get some pretty nice behavior from just that, and if we want different behavior, we can
get it.

What we said here is the same as this...

has name => (
reader => 'name',

)

has title => (
accessor => 'title',

)

Friday, August 9, 13 72

"accessor’ means that "get or set based on whether | gave you an argument” style that we use
all the time in Perl

if we wanted something more like Java with get_/set_ we could do this...

has name => (
reader => 'get_name',

)

has title => (

reader => 'get_title',
writer => 'set_title’,

)

Friday, August 9, 13

73

What happens is that you still get the same old attributes created, but the methods that relate

to them are different. In other words, we're changing the behavior associated with the
attributes.

Moose has lots of ways to let you build behavior based on attributes, and we're going to see
more and more of that as we go on.

has name => (
1S => 'ro',

)

has title => (
1S => 'rw',

)

Friday, August 9, 13 74

but next | want to talk about one more simple way we can describe the potential states of our
objects: type constraints

has name => (

1S => 'ro'
1sd => 'Str',
DK
has title => (
1S => 'rw'
1sa => 'Str',

)

Friday, August 9, 13
Moose has a type constraint system that lets us define datatypes and constrain attribute
values to them. This is extremely useful...

use Employee;

my $peon = Employee->new({
name => 'William Toady',
title => 'Associate Assistant’,

1)

Friday, August 9, 13 76
...say you meant to do this, but you forgot how name works, and thought it was an arrayref
of first/last name, like you use somewhere else in the code. So you do this:

use Employee;

my $peon = Employee->new({
name => ['"William', 'Toady'],
title => 'Associate Assistant’,

1)

Friday, August 9, 13 77
Well, now we know that this is illegal, because we said that name "isa" String. So, as soon as
we try to create this object, we get this nice, helpful error message:

Attribute (name) does not pass the type constraint because: Validation failed for
'Str' with value ARRAY(0x100826a00) at /Users/rjbs/perl5/perlbrew/perls/
perl-5.12.1/11b/site_perl/5.12.1/darwin-2level/Moose/Meta/Attribute.pm 1ine 746

Moose: :Meta: :Attribute: :_coerce_and_verify('Moose: :Meta: :Attribute=HASH(0x100ac41
48)"', "ARRAY(0x100826a00)', 'Employee=HASH(0x100827270)') called at /Users/rijbs/
perl5/perlbrew/perls/perl-5.12.1/11b/site_perl/5.12.1/darwin-2level/Moose/Meta/
Attribute.pm 1ine 398

Moose: :Meta: :Attribute::initialize_instance_slot('Moose: :Meta: :Attribute=HASH(0x1
00ac4148)', 'Moose: :Meta: :Instance=HASH(0x100ac3bfd)"',
"Employee=HASH(0Ox100827270)', 'HASH(0Ox100826a18)') called at /Users/rjbs/perl5/
perlbrew/perls/perl-5.12.1/11b/site_perl/5.12.1/darwin-2level/Class/MOP/Class.pm
line 567

Class::MOP: :Class: :_construct_instance('Moose: :Meta: :Class=HASH(0x100a81538) "',
"HASH(0x100826a18) ') called at /Users/rjbs/perl5/perlbrew/perls/perl-5.12.1/11b/
site_perl/5.12.1/darwin-21level/Class/MOP/Class.pm 1line 540

Class::MOP::Class: :new_object('Moose: :Meta: :Class=HASH(0x100a81538) ',
"HASH(0x100826a18) ') called at /Users/rjbs/perl5/perlbrew/perls/perl-5.12.1/11ib/
site_perl/5.12.1/darwin-21level/Moose/Meta/Class.pm line 256

Moose: :Meta: :Class: :new_object('Moose: :Meta: :Class=HASH(@x100a81538) ',
"HASH(0x100826a18) ') called at /Users/rjbs/perl5/perlbrew/perls/perl-5.12.1/11ib/
site_perl/5.12.1/darwin-2level/Moose/Object.pm line 25

Moose: :0Object: :new('Employee', 'name', 'ARRAY(0x100826a00)') called at
program.pl line 10

Friday, August 9, 13
holy crap! it's a gigantic stack trace! get used to it...

Moose throws these at the slightest provocation. You will hate them at first and learn to love
them later. Probably.

Attribute (name) does not pass the type constraint because: Validation failed for
'Str' with value ARRAY(0x100826a00) at /Users/rjbs/perl5/perlbrew/perls/
perl-5.12.1/11b/site_perl/5.12.1/darwin-2level/Moose/Meta/Attribute.pm 1ine 746

Moose: :Meta: :Attribute: :_coerce_and_verify('Moose: :Meta: :Attribute=HASH(0x100ac41
48)"', "ARRAY(0x100826a00)', 'Employee=HASH(0x100827270)') called at /Users/rijbs/
perl5/perlbrew/perls/perl-5.12.1/11b/site_perl/5.12.1/darwin-2level/Moose/Meta/
Attribute.pm 1ine 398

Moose: :Meta: :Attribute::initialize_instance_slot('Moose: :Meta: :Attribute=HASH(0x1
00ac4148)', 'Moose: :Meta: :Instance=HASH(0x100ac3bfd)"',
"Employee=HASH(0Ox100827270)', 'HASH(0Ox100826a18)') called at /Users/rjbs/perl5/
perlbrew/perls/perl-5.12.1/11b/site_perl/5.12.1/darwin-2level/Class/MOP/Class.pm
line 567

Class::MOP: :Class: :_construct_instance('Moose: :Meta: :Class=HASH(0x100a81538) "',
"HASH(0x100826a18) ') called at /Users/rjbs/perl5/perlbrew/perls/perl-5.12.1/11b/
site_perl/5.12.1/darwin-21level/Class/MOP/Class.pm 1line 540

Class::MOP::Class: :new_object('Moose: :Meta: :Class=HASH(0x100a81538) ',
"HASH(0x100826a18) ') called at /Users/rjbs/perl5/perlbrew/perls/perl-5.12.1/11ib/
site_perl/5.12.1/darwin-21level/Moose/Meta/Class.pm line 256

Moose: :Meta: :Class: :new_object('Moose: :Meta: :Class=HASH(@x100a81538) ',
"HASH(0x100826a18) ') called at /Users/rjbs/perl5/perlbrew/perls/perl-5.12.1/11ib/
site_perl/5.12.1/darwin-2level/Moose/Object.pm line 25

Moose: :0Object: :new('Employee', 'name', 'ARRAY(0x100826a00)') called at
program.pl line 10

Friday, August 9, 13

Attribute (name) does not pass the type
constraint because: Validation failed for
'Str' with value ARRAY(0x100826a00) at

Moose: :0Object: :new('Employee’, 'name',
"ARRAY(0x100820a00) ') called at program.pl
line 10

has name => (

1S => 'ro'
1sd S 1 1
DK
has title => (
1S => 'rw'
1sad => 'Str',
DK

Friday, August 9, 13
Let's look at one more thing we can do with attributes.

has name => (

1S => 'ro
1sa => 'Str',
required => 1,

);

has title => (
1S => 'rw'’
1sad => 'Str',
required => 1,

);

Friday, August 9, 13
now, if you try to create an employee without a title, it will fail.

use Employee;

my $peon = Employee->new({
name => '"William Toady',

1)

use Employee;

my $peon = Employee->new({
name => 'William Toady',

1)

Friday, August 9, 13

this is key to really validating state, and it also lets us show off one last thing.

just as we could override method definitions in a subclass, so can we override attribute
definitions

package Employee: :Former;
use Moose;
extends 'Employee’;

override name_and_title => sub { ... };

has "+title' => (
default => 'Team Member',

)

Friday, August 9, 13

The + says "we're overriding the definition in our superclass. Everything stays the same
except for the provided changes."

Here, we give a default. If no value is given, the default is used, which lets us satisfy the
"required” even when no value was given in the call to the constructor.

use Employee: :Former;

my $ex_peon = Employee::Former->new({
name => 'William Toady',

1)

use Employee: :Former;

my $ex_peon = Employee: :Former->new({
name => 'William Toady',

1)

$ex_peon->nhame_and_title;
===> William Toady, Team Member (former)

checkpoint: attributes

checkpoint: attributes

® is 'ro"andis "rw"

checkpoint: attributes

® is 'ro"andis "rw"

® accessor, reader, writer

checkpoint: attributes

® is 'ro"andis "rw"

® accessor, reader, writer

® |sa

checkpoint: attributes

® is 'ro" and is "rw"
® accessor, reader, writer

® |sa

® required

checkpoint: classes and
subclasses

checkpoint: classes and
subclasses

® use Moose, no Moose
® extends

® override

® has t+attr

Set & Unset

has name => (
1S => 'Iro
1sa => 'Str',
required => 1,

)

has title => (
1S => W
1sad => 'Str',
required => 1,

)

Friday, August 9, 13
"required” means that it must have a value, which brings us to one of the most confusing
topics for beginning Moose users: unset and undefined

to illustrate it, let's imagine a new very simple class

package Network: :Socket;
use Moose;

has port => (
1S => 'ro’',
required => 1,

)

Friday, August 9, 13

Remember, in all these slides it isn't "green behaves like we want and red misbehaves” -- it's

"red code dies and green code lives." Here, we long for death. The green code is bad
behavior.

"required” doesn't mean "requires a defined value" but "requires any ol' value" think about

hashes, here...

92

package Network: :Socket;
use Moose;

has port => (
1S => 'ro’',
required => 1,

)

my $socket = Network::Socket->new;

Friday, August 9, 13

Remember, in all these slides it isn't "green behaves like we want and red misbehaves” -- it's

"red code dies and green code lives." Here, we long for death. The green code is bad
behavior.

"required” doesn't mean "requires a defined value" but "requires any ol' value" think about

hashes, here...

92

package Network: :Socket;
use Moose;

has port => (
1S => 'ro’',
required => 1,

)

my $socket = Network::Socket->new;

my $socket

Network: :Socket->new(port => undef);

Friday, August 9, 13

Remember, in all these slides it isn't "green behaves like we want and red misbehaves” -- it's

"red code dies and green code lives." Here, we long for death. The green code is bad
behavior.

"required” doesn't mean "requires a defined value" but "requires any ol' value" think about

hashes, here...

92

my %hash = (
foo => 1,
bar => 0,
baz => undef,

)

my %hash = (
foo => 1,
bar => 0,
baz => undef,

)

if ($hash{foo}) { ... }

my %hash = (
foo => 1,
bar => 0,
baz => undef,

)

if ($hash{foo}) { ... }

if (defined $hash{bar}) { ... %

my %hash = (
foo => 1,
bar => 0,
baz => undef,

)

if ($hash{foo}) { ... }
if (defined $hash{bar}) { ... %

if (exists $hash{baz}) { ... }

package Network: :Socket;
use Moose;

has port => (

1S => 'ro’',
required => 1,
);
my $socket = Network::Socket->new;

my $socket

Network: :Socket->new(port => undef);

Friday, August 9, 13
so the second one HAS a value -- the value is just undef

"requires” is like "exists" not "defined" or "true”

94

package Network: :Socket;
use Moose;

has port => (
1S => 'ro’',
1sa => 'Defined’,

)

my $socket = Network::Socket->new;

my $socket = Network::Socket->new(port => undef);

Friday, August 9, 13
Replacing required with a type of "defined"” happily makes the undef fail, but the first one
doesn't —- there is no undefined value given, so we accept it. We need both.

95

package Network: :Socket;
use Moose;

has port => (

1S => 'ro’',
1sa => 'Defined’,
required => 1,

);

my $socket = Network::Socket->new;

my $socket = Network::Socket->new(port => undef);

Friday, August 9, 13 96
Great! So, now we can really require a value, and a defined one at that. We can do better...

package Network: :Socket;
use Moose;

has port => (

1S => 'ro’',
1sd => 'Value',
required => 1,
);
my $socket = Network::Socket->new;

my $socket = Network::Socket->new(port => undef);

Friday, August 9, 13
...and limit it to a simple scalar!

This leads to another bit of confusion, which I'll demonstrate right here.

97

package Employee;

has expense_acct => (

J J

1S => 'rw
1sa => 'Int’,

Friday, August 9, 13 98

We're going to add an expense account number to our employees. Some will have them and
some won't. They'll always be integers.

Later on, we'll want to perform some action based on whether the employee has an account.

We test for definedness because, hey, maybe somebody has account number O, right? This is
fine, but we've got a problem...

package Employee;

has expense_acct => (
1S => '"rw'
1sa => 'Int’,

¥

1f (defined $employee->expense_acct) {

Friday, August 9, 13

We're going to add an expense account number to our employees. Some will have them and

some won't. They'll always be integers.

Later on, we'll want to perform some action based on whether the employee has an account.

98

We test for definedness because, hey, maybe somebody has account number O, right? This is

fine, but we've got a problem...

my $employee = Employee->new({
name => 'Conrad Veidt',
title => 'Levity Engineer’,
expense_acct => '8675309',
13

Friday, August 9, 13 99

Let's say we bring on some high-paid important guy and we issue him an expense account
number and he gets to work, and it's a total disaster. The stock price plunges, there are
thousands of layoffs, and (worst of all) the programmers stop receiving free soda.

So, we want to bust this guy down to the very bottom.

my $employee = Employee->new({
name => 'Conrad Veidt',
title => 'Levity Engineer’,
expense_acct => '8675309',
13

$employee->title('Telephone Sanitizer');
$employee->expense_acct(undef);

Friday, August 9, 13

We update his title, and we want to kill his expense account.

Who can see the problem?

my $employee = Employee->new({
name => 'Conrad Veidt',
title => 'Levity Engineer’,
expense_acct => '8675309',
13

$employee->title('Telephone Sanitizer');
$employee->expense_acct(undef);

Friday, August 9, 13 101
We can't set expense account to undef, because it must be an int.

We need the equivalent of delete $hash{key}

has expense_acct => (

1S => 'rw
1sa => 'Int',

)

$employee->title('Telephone Sanitizer');
$employee->expense_acct(undef);

Friday, August 9, 13 101
We can't set expense account to undef, because it must be an int.

We need the equivalent of delete $hash{key}

has expense_acct => (
1S => 'rw
1sa => 'Int’,
clearer => 'clear_expense_acct’,

)

J

$employee->title('Telephone Sanitizer');
$employee->clear_expense_acct;

Friday, August 9, 13
...and that's the clearer. The clearer makes the attribute become unset.

(in case anybody asks, yes, you can clear a required attribute; caveat codor)

102

has expense_acct => (
1S => 'rw
1sa => 'Int’,
clearer => 'clear_expense_acct’,
predicate => 'has_expense_acct’,

)

J

$employee->title('Telephone Sanitizer');
$employee->clear_expense_acct;

Friday, August 9, 13
That predicate is pretty handy -- if the clearer is "delete," the predicate is "exists." For
example, we might as well use it here...

103

has expense_acct => (
1S => "rw'
1sa => 'Int’,
clearer => 'clear_expense_acct’,
predicate => 'has_expense_acct’,

)

1f (defined $employee->expense_acct) {

¥

Friday, August 9, 13 104

has expense_acct => (
1S => 'rw
1sa => 'Int’,
clearer => 'clear_expense_acct’,
predicate => 'has_expense_acct’,

)

J

i1f ($employee->has_expense_acct) {

¥

Friday, August 9, 13
the intent is a lot clearer!

we can use this for some really really useful stuff, like imagine this...

105

package Employee;

sub salary {
my ($self) = @_;

Salary->for_employee($self);
$

Friday, August 9, 13 106

So, we want a way to compute the employee's salary, and it's computed by this Salary
package based on his title, start date, age, interoffice politics, and maybe some other stuff.

It's an expensive calculation, so we want to avoid doing it a lot, so we might do this:

has _salary => (
1s => 'rw',
1sa => 'Int’,
predicate => '_has_salary’,

)

sub salary {
my ($self) = @_;

return $self->_salary if $self->_has_salary;

my $salary = Salary->for_employee($self);

return $self->_salary($salary);
I3

Friday, August 9, 13

107
We just make a private attribute —- we're using the leading underscore just like we would

anywhere else in OO perl —- and have our salary method use it as a cache. In other words,

we don't compute the value until we need to, and once we've computed it once, we hang on
to it. We compute it lazily.

This pattern is so useful that it's built into Moose.

has salary => (
1s = 'rw',
1sa => 'Int',
default => sub {
my ($self) = @_;

return Salary->for_employee($self);

o
)

Friday, August 9, 13 108

We put the routine for computing the default into a sub as the default value —- we can do this
for any attribute, by the way, and it gets the object as its argument. This isn't enough,
though, because this is going to compute the salary as soon as we make the object. We want
to do it lazily.

has salary => (

1s = "rw’',
1sa => 'Int',
lazy => 1,

default => sub {
my ($self) = @_;
return Salary->for_employee($self);

},
)

Friday, August 9, 13 109
so we just tell it to be lazy! now the accessor will generate a default value any time we try to

read it while it's unset.
Note that lazy attributes *require* default values.

So what's the next problem?

has salary => (

1s = 'rw',
1sa => 'Int',
lazy => 1,

builder => "_build_salary',
)

sub _build_salary {

my ($self)
return Salary->for_employee($self);

¥

Friday, August 9, 13 110

I'm not going to use default, though, I'm going to use builder. It's *exactly the same*, but it
calls a method on the object, so you can put your default sub in a separate place, and it's
easy to override. Great!

So what's the next problem?

Friday, August 9, 13 111
we've got a guy who gets demoted from a corner office to a basement closet

ugh. when we demote him, we want his salary to change!

this is extremely easy to solve

my $employee = Employee->new({

Friday, August 9, 13

111
we've got a guy who gets demoted from a corner office to a basement closet

ugh. when we demote him, we want his salary to change!

this is extremely easy to solve

my $employee = Employee->new({
name => 'David Niven',

Friday, August 9, 13 111
we've got a guy who gets demoted from a corner office to a basement closet

ugh. when we demote him, we want his salary to change!

this is extremely easy to solve

my $employee = Employee->new({
name => 'David Niven',
title => "Managing Director',

Friday, August 9, 13 111
we've got a guy who gets demoted from a corner office to a basement closet

ugh. when we demote him, we want his salary to change!

this is extremely easy to solve

my $employee = Employee->new({
name => 'David Niven',
title => "Managing Director',

¥

Friday, August 9, 13 111
we've got a guy who gets demoted from a corner office to a basement closet

ugh. when we demote him, we want his salary to change!

this is extremely easy to solve

my $employee = Employee->new({
name => 'David Niven',
title => "Managing Director',

¥

say $employee->salary; # ==> 500_000

Friday, August 9, 13 111
we've got a guy who gets demoted from a corner office to a basement closet

ugh. when we demote him, we want his salary to change!

this is extremely easy to solve

my $employee = Employee->new({
name => 'David Niven',
title => "Managing Director',

s
say $employee->salary; # ==> 500_000

$employee->title('Pencil Maintenance');

Friday, August 9, 13
we've got a guy who gets demoted from a corner office to a basement closet

111

ugh. when we demote him, we want his salary to change!

this is extremely easy to solve

my $employee = Employee->new({
name => 'David Niven',
title => "Managing Director',

¥

say $employee->salary; # ==> 500_000
$employee->title('Pencil Maintenance');

say $employee->salary; # ==> 500_000

Friday, August 9, 13 111
we've got a guy who gets demoted from a corner office to a basement closet

ugh. when we demote him, we want his salary to change!

this is extremely easy to solve

has salary => (

1s = 'rw',

1sa => 'Int',

lazy => 1,

clearer => 'clear_salary',

builder => "_build_salary’,
DK

Friday, August 9, 13 112
We add that clear_salary clearer. Why is this useful? Well, lazy attributes work a lot like |

hacked up, earlier:

sub salary {
my ($self) = @_;

return $self->_salary if $self->_has_salary;

my $salary = Salary->for_employee($self);
return $self->_salary($salary);

¥

Friday, August 9, 13 113
...if we already have a set value, return it; otherwise, calculate it...

...so if we have a clearer, and we unset the attribute, next time we read it, the builder is called
again!

has salary => (

1s = 'rw’',

1sa => 'Int',

lazy => 1,

clearer => 'clear_salary',

builder => "_build_salary’,
DK

Friday, August 9, 13 114

All that remains is a way to make sure the clearer gets called whenever we need it to be. This
IS easy, too...

has salary => (

1s = "rw’',
1sa => 'Int',
lazy => 1,
clearer => 'clear_salary',
builder => "_build_salary’,
DK
has title => (
1s => '"rw'
1sa => 'Str’,
required => 1,
DK

Friday, August 9, 13 115
here's what we had in our "title" attribute declaration; all we do now is add...

has salary => (

1s = 'rw',
1sa => 'Int',
lazy => 1,
clearer => 'clear_salary',
builder => "_build_salary’,
DK
has title => (
1S => "rw',
1Sd => 'Str',

required => 1,

trigger => sub {
my ($self) = @_;
$self->clear_salary;

o
)

Friday, August 9, 13 116
ta daaaaa

has salary => (

1s = 'rw',

1sa => 'Int',

lazy => 1,

clearer => 'clear_salary',
builder => "_build_salary’,

)

Friday, August 9, 13 117
Finally, you see here that we've made salary read/write. We probably want to eliminate the
ability to directly change the user's salary, since we want it to follow our salary-computing
library's rules. Part of this is simple...

has salary => (

1s => 'ro',

1sa => 'Int',

lazy => 1,

clearer => 'clear_salary',

builder => "_build_salary’,
DK

Friday, August 9, 13 118

...we change the attribute to read-only. That's a good start, but there's still a way that the
user can set the salary and bypass our algorithm. Anybody?

my $employee = Employee->new({
name => 'Ricardo Signes',
title => 'Research & Development',
salary => 1_000_000,

1)

Friday, August 9, 13 119

It can still be specified at construction time! Since there won't be a value set, it won't ever
call the getter. How do we avoid this?

has salary => (

1s => 'ro',

1sa => 'Int’,

lazy => 1,

clearer => 'clear_salary',

builder => '_build_salary’,
init_arg => 'salary',

)

Friday, August 9, 13 120
Well, there's another "has" argument called init_arg, and it controls the name used to
initialize the attribute in the constructor. By default, it's just the attribute name.

has salary => (
1s => 'ro',
1sa => 'Int’,
lazy_build => 1,
init_arg => 'yearly_salary',

)

Friday, August 9, 13 121

If we want to change it to something else, we can do that —- this can be useful for offering
"public” names for "private” (meaning leading underscore) attributes. But we can also do this:

has salary => (
1s => 'ro',
1sa => 'Int’,
lazy_build => 1,
init_arg => undef,

)

Friday, August 9, 13 122
Now there is no init_arg for salary, so there is no way to specify it in the constructor.

(If specified, it will be ignored, not fatal. (This sucks.))

checkpoint: attributes
unset, build, lazy

® predicate

® clearer
® builder
® |azy

® |azy build

Friday, August 9, 13 123

Okay! So we've seen a lot about how to produce more powerful behavior centered around
attributes. We're seeing how Moose makes a lot of pretty powerful, valuable features
available with very little work required —- at least with regard to state. Let's go back to
talking about methods again.

package Network: :Socket;
use Moose;

sub send_string {
my ($self, $string) = @_;

sub send_l1ines {
my ($self, $lines) = @_;

Friday, August 9, 13 125

So, we're going back to our network socket example. We've added some methods that we'll
use to send a hunk of text, or a sequence of lines. All the network code isn't really relevant
to this example, so I'm leaving it out.

Now we want to write a subclass that does a bunch of debugging stuff. Part of that will be to
print out a notice when we send stuff, describing the new client state.

package Network::Socket::Noisy;
use Moose;
extends 'Network::Socket';

override send_string => sub {
my ($self, $string) = @_;
my $result = super;
say $self->describe_client_state;
return $result;

s

override send_lines => sub {
my ($self, $lines) = @_;
my $result = super;
say $self->describe_client_state;
return $result;

s

Friday, August 9, 13 126
So, we've overridden these methods to do the original job, then add this hunk of output --
and let's just take describe_client_state as granted -- and then return the result of calling the
superclass method. So, what's the huge problem we've introduced? (Anybody?)

Well, see, | didn't show you the return value of those methods...

package Network: :Socket;
use Moose;

sub send_string {
my ($self, $string) = @_;

return $reply;

¥

sub send_lines {
my ($self, $lines) = @_;

return wantarray ? @replies
. sum { length } @replies;

Friday, August 9, 13

Anybody now?

Ugh! These methods don't all just return a scalar...

package Network::Socket::Noisy;
use Moose;
extends 'Network::Socket';

override send_string => sub {
my ($self, $string) = @_;
my $result = super;
say $self->describe_client_state;
return $result;

s

override send_lines => sub {
my ($self, $lines) = @_;
my $result = super;
say $self->describe_client_state;
return $result;

}s
Friday, August 9, 13
We wrote this code...

package Network: :Socket: :Noisy;
use Moose;

extends 'Network::Socket';

override send_string => sub {
my ($self, $string) = @_;
my $result = super;
say $self->describe_client_state;
return $result;

s

override send_lines => sub {
my ($self, $lines) = @_;
my $result = super;

say $self->describe_client_state;
return $result;
s

...which forces scalar context on the superclass call, and then returns a scalar no matter
what.

send_lines might return a list, and now we've broken any code that relied on the contextual
difference in return values

We can try to avoid this in a bunch of ways, but they're awful. For example, imagine...

override send_lines => sub {
my ($self, $lines) = @_;

my @result = wantarray ? super : scalar super;

say $self->describe_client_state;

return wantarray ? @result : $result[0];
¥

Friday, August 9, 13

130
We'll have to do this in both places, and anyplace else. It's just gross. Worse, it might not be
that simple. We don't really want to get in the way of the return value processing, we just
want to add some extra behavior to be run after the method. Moose makes this easy.

after send_lines => sub {
my ($self) = @_;

say $self->describe_client_state;

s

Friday, August 9, 13
See! Easy! It's so easy that we can just apply the same thing to send_string...

after send_string => sub {
my ($self) = @_;

say $self->describe_client_state;

s

after send_lines => sub {
my ($self) = @_;

say $self->describe_client_state;

s

Friday, August 9, 13
And since we're modifying that method exactly the same way, we can just say this...

after ['send_string', 'send_lines' | => sub {
my ($self) = @_;

say $self->describe_client_state;

s

Friday, August 9, 13 133

and if we have a convention for method naming and we just want to apply this modifier to
any send_ method, we can write...

after gr/Asend_/ => sub {
my ($self) = @_;

say $self->describe_client_state;

s

134

Friday, August 9, 13
Now any superclass method starting with send_ gets this code run after it! We can add

modifiers multiple times, either because we're subclassing several levels deep or because we
want two conceptually distinct "after” modifiers on one method. Be careful: if your regex

matches nothing, there is no warning that you might have screwed up.
And of course, if we can after, we can also ...

before gr/Asend_/ => sub {
my ($self) = @_;

say $self->describe_client_state;

s

Friday, August 9, 13
before.

there are other modifiers, too. for example...

sub send_string {
my ($self, $string) = @_;

[] [] [] ,

return $reply;
¥

Friday, August 9, 13

send_string has a nice simple return value, just the string we got back. Let's log what we
send and what we get back -- we can't use before or after for this, because neither can see
the return value. Instead, we're going wrap the whole method up with "around”

around send_string => sub {
my ($orig, $self, $string) = @_;

say "about to send $string";
my $reply = $self->%$orig($string);
say "got $reply in response”;

return $reply;
5

Friday, August 9, 13
So, there are a few things to note here...

around send_string => sub {
my ($orig, $self, $string) = @_;

say "about to send $string";
my $reply = $self->%$orig($string);
say "got $reply in response”;

return $reply;
5

Friday, August 9, 13 138

first, we get a reference to the original code before the rest of the normal arguments when
our around "method modifier" is called

around send_string => sub {
my ($orig, $self, $string) = @_;

say "about to send $string";
my $reply = $self->%$orig($string);
say "got $reply in response”;

return $reply;
¥

Friday, August 9, 13

then we're responsible for calling the method, doing whatever we want, and returning the
return value. (this means it's up to us to keep track of context, although there are a few
helpers for that on CPAN; Contextual::Call, for example)

the around modifier has a bunch of uses, some obvious or common, and some pretty
esoteric. one of the more common uses we see, beyond the "add instrumentation” seen
above, is arg/rv munging

package HTML: :Munger;

sub munge_html {
my ($orig, $html_tree) = @_;

do all kinds of tree-munging stuff to
$html_tree

return $new_html_tree;

¥

Friday, August 9, 13 140
So we have this class that mucks about with HTML::Tree objects, and we like it, but we want
to stop thinking about parsing and re-stringifying our HTML. We just want to deal in strings.
So we can write a simple subclass...

package HTML: :Munger: :Stringy;
use Moose;
extends 'HTML: :Munger';

around munge_html => sub {
my ($orig, $self, $html_string) = @_;

my $tree = HTML::Tree->parse($html_string);
my $new_tree = $self->%$orig($tree);

return $new_tree->as_HTML;

s

Friday, August 9, 13
and now it expects and returns strings

package Employee;

has salary => (

1s = 'rw',

1sa => 'Int',

lazy => 1,

clearer => 'clear_salary',

builder => '_build_salary’,
DK

has title => (

trigger => sub {
my ($self) = @_;
$self->clear_salary;

5y
) .
)
Friday, August 9, 13 142

Okay, one last example of using method modifiers —- and we're going to combine them with
methods from attributes!

Everybody remember our Employee class? We had to clear the salary when we changed the
title so that it could be recomputed. What if we have to go the other way?

has salary => (
lazy => 1,

);

has pay_grade => (
lazy => 1,

);

sub _build_pay_grade {
my ($self) = @_;

Salary->pay_grade($self->salary);
h

Friday, August 9, 13 143
Now we have the same kind of problem, but in reverse. If we change title, salary gets cleared
SO it can get re-set. The problem is that we need to clear pay_grade, too, any time we clear
the salary. We can't use a trigger, because... yeah, triggers aren't called on clearing. D'oh!

One again, we can just use a method modifier.

after clear_salary => sub {
my ($self) = @_;

$self->clear_pay_grade;

o

Friday, August 9, 13 144

After all, even though clear_salary is generated by the "has" statement, it's still a method, and
we can modify it with all the method modifiers we've got.

checkpoint:
method modifiers

checkpoint:
method modifiers

® after

checkpoint:
method modifiers

® after

® before

checkpoint:
method modifiers

® after

® before

® around

checkpoint:
method modifiers

® after

® before

® around

® modify [...] =>sub { ... }

checkpoint:
method modifiers

after

before

around
modify [...] => sub { ... }
modify qr/.../ => sub { ... }

Code Reuse

Code Reuse with Moose

Network::Socket

T

Network::Socket::Noisy

so, we made a noisy subclass, remember?

Code Reuse with Moose

Network::Socket

T

T

Network::Socket::Noisy

Network::Socket::SSL

Friday, August 9, 13
we also have another subclass, for SSL sockets

what if we want both extensions?

148

Code Reuse with Moose

Network::Socket

]

Network::Socket::Noisy| | Network::Socket::SSL

]

Network::Socket::Noisy:SSL

Friday, August 9, 13 149

The experienced OO programmers are those in the audience who (a) saw this coming and (b)
groaned anyway when they saw the slide.

Multiple Inheritance

Multiple Inheritance

Multiple Inheritance

® Moose supports Ml

Multiple Inheritance

® Moose supports Ml

® method modifiers can
make Ml less painful

Friday, August 9, 13 150

Multiple Inheritance

® Moose supports Ml

® method modifiers can
make Ml less painful

® but it doesn't really matter

Friday, August 9, 13 150

Multiple Inheritance

® Moose supports Ml

® method modifiers can
make Ml less painful

® but it doesn't really matter

® nobody uses Ml in Moose

Friday, August 9, 13 150

Roles!

Friday, August 9, 13 151
Who here has heard about roles?

Who has no idea what they are?

Roles are called "traits” in most languages that support them. Does that help?

Roles in a Nutshell

Friday, August 9, 13 152
One of the biggest jobs of a role is to act like an #include statement.

Roles in a Nutshell

#1nclude

Friday, August 9, 13 152
One of the biggest jobs of a role is to act like an #include statement.

package Role: :Logger;
use Moose: :Role;

sub log {
my ($self, $level, $message) = @_;
return unless $level >= $self->level;
say $message;

¥

has level => (
1s = 'rw',
1sa => 'Int',
default => 0,

)

no Moose: :Role;

Friday, August 9, 13 153

So, here's a really, really simple role. It looks just like a class, right? It's got attributes and
methods.

It isn't a class, though. We can't call new on it, we can't subclass it with "extends,"” and we
can't write a role that is a subclass. Roles are not very classy.

package Role: :Logger;
use Moose: :Role;

sub log { ... }
has level => (...);

package (Class;
use Moose;

sub do_stuff {

$self->log(5 => "We just did stuff.");
}

Friday, August 9, 13 154

So, then we have a class, and we want that class to be able to use our logging code. We act
like we've got that logger method in our class and just go ahead and call it.

To get the role composed into our class, we just say...

package Role: :Logger;
use Moose: :Role;

sub log { ... }
has level => (...);

package (Class;
use Moose;

with 'Role::Logger’;
sub do_stuff {

$self->log(5 => "We just did stuff.");
}

Friday, August 9, 13 155
the "with" function says, "take this role and use it in my class”

what does that mean? well, it means this:

package (Class;
use Moose;

sub log { ... }
has level => (...);

sub do_stuff {

$self->log(5 => "We just did stuff.™);
h

Friday, August 9, 13 156

Everything we said in Role::Logger gets included, right there. Once you have that with, the

inclusion happens and everything from there on is normal. So you can go ahead and do stuff
like this:

package Class;
use Moose;

with 'Role::Logger’;

after log = sub { ... };

sub do_stuff {

$self->log(5 => "We just did stuff.");
5

Friday, August 9, 13 157
Role::Logger will give us a "log" method, and then we can add some extra "after” behavior.

package Class;
use Moose;

with 'Role::Logger’;

after log = sub { ... };
has '+level' => (default => 3);

sub do_stuff {

$self->log(5 => "We just did stuff.");
5

Friday, August 9, 13 158
...and the same goes for attributes.

There's one more really important kind of thing we can put in a role...

package Role: :Logger;
use Moose: :Role;

sub log {
my ($self, $level, $message) = @_;
return unless $level >= $self->level;
$self->emit($message);

¥

has level => (...);

no Moose: :Role;

Friday, August 9, 13 159
Let's say we want this logger role to be able to send to a text file, or STDOUT, or syslog, or
whatever. We replace our old code, which just used say, with a method named emit.

We don't want to implement this in the role, though, we're going to leave it up to the class,
and we note that.

package Role: :Logger;
use Moose: :Role;

requires 'emit’;
sub log {
my ($self, $level, $message) = @_;

return unless $level >= $self->level;
$self->emit($message);

¥

has level => (...);

no Moose: :Role;

Friday, August 9, 13 160

We just add this "requires” line. It means that "if you're going to use this role, you are
required to have already implemented this method."

Then, when we compose the role...

package (Class;
use Moose;

sub log { ... }
has level => (C ...);

sub do_stuff {

$self->log(5 => "We just did stuff.™);
h

Friday, August 9, 13 161
Instead of getting just this, we get something more like...

package Class;

use Moose;

die "you forgot 'emit'"

unless __PACKAGE__->can('emit');

sub log { ... }
has level => (...);

sub do_stuff {

$self->log(5 => "We just did stuff.");
5

Friday, August 9, 13 162
Nice! Unless the class is providing the requires method, it blows up.

package Class;
use Moose;

with 'Role::Logger’;
sub do_stuff {

$self->log(5 => "We just did stuff.");
¥

Friday, August 9, 13 163
We can compose as many roles as we want into our class...

package (Class;
use Moose;

with 'Role::Logger’',
'Role: :Reporter’;

sub do_stuff {

$self->log(5 => "We just did stuff.™);
h

Friday, August 9, 13 164
We can compose as many roles as we want into our class...

package (Class;
use Moose;

with 'Role::Logger’,
'Role: :Reporter’,
'Role: :Socket’;

sub do_stuff {

$self->log(5 => "We just did stuff.");
¥

Friday, August 9, 13 165
So, what do these new roles we brought in do? Let's imagine they each provide one method...

package (Class;
use Moose;

with 'Role::Logger',
'Role: :Reporter', # provides "send"
'Role: :Socket’; # provides "send"

sub do_stuff {

$self->log(5 => "We just did stuff.");
¥

Friday, August 9, 13 166

O no! A method name conflict! Well, what happens? First, let's see what would happen in
other systems.

package (Class;

with 'Role::Logger',
'Role: :Reporter’,
'Role: :Socket’;

provides "send"
provides "send"

Logger

Friday, August 9, 13

Reporter

1

Class

Socket

/

With multiple inheritence, | think the problems are pretty well known. Only one of these
would get called, so we probably have some method to try to disambiguate in our subclass,

but it's a big hot mess.

Also, that hot mess won't manifest until runtime. Everying works just fine until we try to

print our log message right to our HTTP socket.

167

with 'Ro]
'Ro

package (Class;

e::Logger’,

e::Reporter’,

'Ro

e::Socket’;

provides "send"
provides "send"

Logger

Reporter

Class

Socket

Friday, August 9, 13

using mixins, the problems basically remain

168

package (Class;

with 'Role::Logger’,
'Role: :Reporter', # provides "send"
'Role: :Socket’; # provides "send"

Logger

Friday, August 9, 13

Reporter Socket

! '

Composite | Class
Role

169
With roles, when we compose multiple roles into one class, Moose first combines all the roles

into one role. *That* role is the thing we actually include, not each role in any sort of order.
The combining process detects any conflict, and if we have conflicting method definitions, it

is a compile time failure.

with 'RoO]
'Ro
'Ro

package (Class;

e::Logger’,
e::Reporter', # provides "send"
e::Socket’;

provides "send"

Logger

Reporter Socket
! '
Composite | Class
Role

Friday, August 9, 13

So, right here, this will fail. It will fail at compile time. We can't have any bizarre runtime

behavior because we can't even compile this code.

There are ways to resolve this —- we can exclude or rename methods from particular roles,

like this...

170

package Class;

-alias

¥

with 'Role::Logger’,
'Role: :Reporter' => {

=> { send => 'send_report' },

-excludes => 'send',

'Role: :Socket’; # provides "send"
Logger Reporter Socket
N ! e
Composite | Class
Role

Friday, August 9, 13

...but this is almost *always* a bad idea, and | promise I'll explain why. Let's not even talk
about doing what this slide shows, though. Just remember: if you see this, it's probably a
design problem. In general, if you are doing multiple roles that have conflicting method

names, it is a sign that you should refactor your classes.

171

#1nclude

Friday, August 9, 13

Anyway, now it's pretty clear that role composition is more sophisticated than #include, so
let's review the ways

172

That last bit is really important. We know what methods came from where -- but the really
great thing is less detailed: we know all the roles that we included in our class.

#1nclude

® roles can make demands

Friday, August 9, 13

Anyway, now it's pretty clear that role composition is more sophisticated than #include, so
let's review the ways

172

That last bit is really important. We know what methods came from where -- but the really
great thing is less detailed: we know all the roles that we included in our class.

#1nclude

® roles can make demands

® bits can be excluded or renamed (put don't do this)

Friday, August 9, 13

Anyway, now it's pretty clear that role composition is more sophisticated than #include, so
let's review the ways

172

That last bit is really important. We know what methods came from where -- but the really
great thing is less detailed: we know all the roles that we included in our class.

#1nclude

® roles can make demands
® bits can be excluded or renamed (but don't do this)

® we're including code, not strings

Friday, August 9, 13

Anyway, now it's pretty clear that role composition is more sophisticated than #include, so
let's review the ways

172

That last bit is really important. We know what methods came from where -- but the really
great thing is less detailed: we know all the roles that we included in our class.

#1nclude

® roles can make demands
® bits can be excluded or renamed (put don't do this)
® we're including code, not strings

® we have a record of what was included

Friday, August 9, 13 172

Anyway, now it's pretty clear that role composition is more sophisticated than #include, so
let's review the ways

That last bit is really important. We know what methods came from where -- but the really
great thing is less detailed: we know all the roles that we included in our class.

"Vertical' Code Reuse

Class

|

Subclass

"Vertical' Code Reuse

Class

|

Subclass

Subclass->1sa('Class')

"Horizontal' Code Reuse

Role > Class

"Horizontal' Code Reuse

Role > Class

Class->does('Role’)

package Network: :Socket;
use Moose;

sub send_string { ... }
sub send_lines { ... }

Friday, August 9, 13 175

Okay, remember Network::Socket? Now let's imagine we have this Blob class that represents
a hunk of data, and we have a method to send it across a network connection, which we'll
assume is part of Network::Socket.

package Network: :Socket;
use Moose;

sub send_string { ... }
sub send_lines { ... }

package Blob;

Friday, August 9, 13 175

Okay, remember Network::Socket? Now let's imagine we have this Blob class that represents
a hunk of data, and we have a method to send it across a network connection, which we'll
assume is part of Network::Socket.

package Network: :Socket;

use Moose;
sub send_string { ... }
sub send_lines { ... }

package Blob;

sub send_to {
my ($self, $target) = @_;

confess "can't send to $target”
unless $target->isa('Network: :Socket');

$target->send_string($self->contents);

¥

Friday, August 9, 13 176

So, we're going to do a little input validation, and traditionally the way to check for an
interface is to use "isa" which we do right here...

package Network: :Socket;
use Moose;

sub send_string { ... }
sub send_lines { ... }

package Blob;

sub send_to {
my ($self, $target) = @_;

confess "can't send to $target”
unless $target->isa('Network: :Socket');

$target->send_string($self->contents);

¥

Friday, August 9, 13 177
Of course, the problem is that now if we want to write some other kind of valid target for the
Blob to send to, it has to subclass Network::Socket, which has a zillion methods, attributes,
and all kinds of assumptions. Anybody maintaining Blob will think they can rely on any of
those, and we don't want to encourage that. One option would be to say...

package Network: :Socket;
use Moose;

sub send_string { ... }
sub send_lines { ... }

package Blob;

sub send_to {
my ($self, $target) = @_;

confess "can't send to $target”
unless $target->can('send_string');

$target->send_string($self->contents);

¥

Friday, August 9, 13 178

...and that's a lot better, but we can do better. For one thing, how do we know it has the
right semantics for that method? What if it's a coincidence?

Obviously we're getting at roles, right? Right. It's easy...

package Network: :Socket;

use Moose;
sub send_string { ... }
sub send_lines { ... }

package Blob;

sub send_to {
my ($self, $target) = @_;

confess "can't send to $target”
unless $target->does('Transmitter');

$target->send_string($self->contents);

¥

Friday, August 9, 13 179
We just require that Network::Socket "does” the Transmitter role. What's that role look like?

package Network: :Socket;
use Moose;

with 'Transmitter’;

sub send_string { ... }
sub send_lines { ... }

package Transmitter;
use Moose: :Role;

requires 'send_string';

Friday, August 9, 13 180
Seriously, that's it. That's all. Here, we're not using roles to act like an #include of code,
we're using it because it can act as a contract: by including Transmitter, the author of
Network::Socket promised to implement send_string. Moose makes sure he keeps his
promise and lets us know by, well, not *dying*.

package Network: :Socket;
use Moose;

with 'Transmitter’;

sub send_string { ... }
sub send_lines { ... }

package Transmitter;
use Moose: :Role;

requires 'send_string';

Friday, August 9, 13 181
So, roles are going to serve us in two ways: they're going to let us re-use bundles of
features, and they're going to let us check that classes or objects provide well-known,

promised bundles of features.

package Role: :Logger;
use Moose: :Role;

requires ‘'emit’;
sub log {
my ($self, $level, $message) = @_;

return unless $level >= $self->level;
$self->emit($message);

¥

has level => (...);

no Moose: :Role;

Friday, August 9, 13 182
Remember when we added the "emit" requirement to our Logger role? That required an emit
method on the composing class, which was basically going to lock anybody down to one kind
of emitter. That is: anybody including the role has to implement his or her own specific
"emit,” or include a specific role that provides one.

We can do something much more flexible, here.

has xmitter => (

J L

1s => 'ro',
required => 1,

);

sub log {

my ($self, $level, $message) = @_;
return unless $level >= $self->level;
$self->emit($message);

¥

has level => (...);

Friday, August 9, 13 183
We add a transmitter attribute...

has xmitter => (

1s => 'ro',
required => 1,

);

sub log {

my ($self, $level, $message) = @_;
return unless $level >= $self->level;
$self->xmitter->send_string($message);

¥

has level => (...);

Friday, August 9, 13 184
We use its send_string method to emit our log messages...

has xmitter => (
1s => 'ro',
does => 'Transmitter’,
required => 1,

)

sub log {
my ($self, $level, $message) = @_;
return unless $level >= $self->level;
$self->xmitter->send_string($message);

¥

has level => (...);

Friday, August 9, 13 185

and then we put a type constraint on the transmitter —- it has to be something that ->does
the Transmitter role!

does is a shortcut for "isa" requiring that something do a given role

Roles at Work

Friday, August 9, 13

186
When | said that people in Moose never used multiple inheritance, | wasn't stretching the

truth very much. In fact, lots of Moose users never even use *single* inheritance. They just
use roles.

Now | want to take a momen to talk about the "promise” that role inclusion generates, with a
brief look back at excluding and renaming stuff...

Roles at Work

® reusable bundles of code

Friday, August 9, 13

186
When | said that people in Moose never used multiple inheritance, | wasn't stretching the

truth very much. In fact, lots of Moose users never even use *single* inheritance. They just
use roles.

Now | want to take a momen to talk about the "promise” that role inclusion generates, with a
brief look back at excluding and renaming stuff...

Roles at Work

® reusable bundles of code

® "composable units of behavior”

Friday, August 9, 13

186
When | said that people in Moose never used multiple inheritance, | wasn't stretching the

truth very much. In fact, lots of Moose users never even use *single* inheritance. They just
use roles.

Now | want to take a momen to talk about the "promise” that role inclusion generates, with a
brief look back at excluding and renaming stuff...

Roles at Work

® reusable bundles of code

® "composable units of behavior”

® named interfaces

Friday, August 9, 13

186
When | said that people in Moose never used multiple inheritance, | wasn't stretching the

truth very much. In fact, lots of Moose users never even use *single* inheritance. They just
use roles.

Now | want to take a momen to talk about the "promise” that role inclusion generates, with a
brief look back at excluding and renaming stuff...

Roles at Work

® reusable bundles of code

® "composable units of behavior”

® named interfaces

® with promise to implement that interface

Friday, August 9, 13

186
When | said that people in Moose never used multiple inheritance, | wasn't stretching the

truth very much. In fact, lots of Moose users never even use *single* inheritance. They just
use roles.

Now | want to take a momen to talk about the "promise” that role inclusion generates, with a
brief look back at excluding and renaming stuff...

Roles at Work

® reusable bundles of code

® "composable units of behavior”

® named interfaces

® with promise to implement that interface

® an alternative to inheritance

Friday, August 9, 13

186
When | said that people in Moose never used multiple inheritance, | wasn't stretching the

truth very much. In fact, lots of Moose users never even use *single* inheritance. They just
use roles.

Now | want to take a momen to talk about the "promise” that role inclusion generates, with a
brief look back at excluding and renaming stuff...

package Class;

¥

'Role: :Socket’;

with 'Role::Logger’',
'Role: :Reporter’

provides "send"

Logger

N

Reporter

!

Composite
Role

Socket

v

> Class

Friday, August 9, 13

Remember this? It was that mechanism for resolving method name conflicts. It let you

rename methods you got from a role, or just skip them altogether.

187

This is a *terrible* idea, because it means you're breaking your promise. That is why this is a
red flag. It totally undermines the value of roles as a promised interface.

checkpoint: roles

checkpoint: roles

® roles act a lot like #1nclude

checkpoint: roles

® roles act a lot like #1nclude

® can add methods, modifiers, or attributes

Friday, August 9, 13 188

checkpoint: roles

® roles act a lot like #1nclude

® can add methods, modifiers, or attributes

® can require other methods be provided

Friday, August 9, 13

188

checkpoint: roles

® roles act a lot like #1nclude
® can add methods, modifiers, or attributes
® can require other methods be provided

® they promise to provide a named interface

Friday, August 9, 13 188

checkpoint: roles

package Edible;
use Moose: :Role;

no Moose: :Role;
1;

This is how you write a role.

checkpoint: roles

package Scrapple;
use Moose;

with 'Edible';

no Moose;
1;

This is how you include a role.

checkpoint: roles

1f ($thing->does('Edible')) {

, e

This is how you test for inclusion of a role.

Any
Questions!

Friday, August 9, 13 192

(halftime break begins)

(tell everybody where the cake is)

Type Constraints

Friday, August 9, 13 193
Okay, let's talk about type constraints. The Moose type constraint system is a huge feature.

Friday, August 9, 13

Like, really, really huge.

Moose lypes

Friday, August 9, 13

(but hey, it's not like you're getting C++ either, so that's okay)

Moose lypes

® the Moose type system isn't really types

Friday, August 9, 13

(but hey, it's not like you're getting C++ either, so that's okay)

Moose lypes

® the Moose type system isn't really types

® it's not like you're getting Haskell or Scala

Friday, August 9, 13

(but hey, it's not like you're getting C++ either, so that's okay)

Moose lypes

® the Moose type system isn't really types
® it's not like you're getting Haskell or Scala

® it's a way to do pervasive data validation

Friday, August 9, 13

(but hey, it's not like you're getting C++ either, so that's okay)

Moose lypes

® the Moose type system isn't really types
® it's not like you're getting Haskell or Scala
® it's a way to do pervasive data validation

® at runtime

Friday, August 9, 13

(but hey, it's not like you're getting C++ either, so that's okay)

has children => (
1S => 'ro',
1sa => ArrayRef[Node],
default => sub {

return [];

[
)

Friday, August 9, 13 196

The most common place to see types is in an attribute declaration's "isa" parameter, but we
can use them all over the place.

sub walk_nodes {
my ($self, $callback) = @_;

CodeRef->assert_valid($callback);

has children => (
1S => 'ro',
1sa => ArrayRef[Node],
default => sub {

return [];

¥

Friday, August 9, 13

So, you might have noticed that earlier, | was using strings for types, and now I'm using
barewords. That's not a mistake, it's a conscious decision. Moose lets you give a stringy
name for types that were registered by name. There's a big problem, though: string types

are global, so now you're relying on global names not to conflict. It's gross.

has children => (
1S => 'ro',
1sa => ArrayRef[Node],
default => sub {

return [];

[
)

Friday, August 9, 13 199

Unless you're using only very simple types, | suggest you always use these other types, which
look like barewords. So, let's talk about what "very simple types” means and how to get these
other kinds of types.

Moose::Util:: TypeConstraints

Any
Item
Bool
Undef
Defined
Value
Str
Num
Int
Ref
ArrayRef[...]
HashRef[...]
CodeRef
Object

Friday, August 9, 13 200

The core types! These are pretty much the only types | suggest you use as strings. They're
really common, really obvious, and because they're just strings, they're really easy to use.
There are some I'm not showing here, but nothing you're likely to use much. They're all

defined in M:U:TC.

For more complicated types, we end up using MooseX::Types

Moose::Util:: TypeConstraints

Any
Item
Bool
gg??ﬁed "ArrayRef"
Value
Str
Num
Int
Ref
ArrayRef[...]
HashRef[...]
CodeRef
Object

Friday, August 9, 13 200

The core types! These are pretty much the only types | suggest you use as strings. They're
really common, really obvious, and because they're just strings, they're really easy to use.
There are some I'm not showing here, but nothing you're likely to use much. They're all

defined in M:U:TC.

For more complicated types, we end up using MooseX::Types

Moose::Util:: TypeConstraints

Any

Item
Bool
Undef " "
Defined ArrayRet

Vaé:i "ArrayRef[Int]"
Num
Int
Ref
ArrayRef[...]
HashRef[...]
CodeRef
Object

Friday, August 9, 13 200

The core types! These are pretty much the only types | suggest you use as strings. They're
really common, really obvious, and because they're just strings, they're really easy to use.
There are some I'm not showing here, but nothing you're likely to use much. They're all

defined in M:U:TC.

For more complicated types, we end up using MooseX::Types

Moose::Util:: TypeConstraints

Any

Item
Bool
Undef " "
Defined ArrayRet

Value " "
i ArrayRef[Int]

Num . "
Int HashRef

Ref
ArrayRef[...]
HashRef[...]
CodeRef
Object

Friday, August 9, 13 200

The core types! These are pretty much the only types | suggest you use as strings. They're
really common, really obvious, and because they're just strings, they're really easy to use.
There are some I'm not showing here, but nothing you're likely to use much. They're all

defined in M:U:TC.

For more complicated types, we end up using MooseX::Types

Moose::Util:: TypeConstraints

Any

Item
Bool
Undef " "
Defined ArrayRet

Value " "
i ArrayRef[Int]

Num . "
Int HashRef

Re:rrayRef[m] "HashRef[Object]"
HashRef[...]
CodeRef
Object

Friday, August 9, 13 200

The core types! These are pretty much the only types | suggest you use as strings. They're
really common, really obvious, and because they're just strings, they're really easy to use.
There are some I'm not showing here, but nothing you're likely to use much. They're all

defined in M:U:TC.

For more complicated types, we end up using MooseX::Types

package Network: :Socket;

has port => (
1S => 'ro'
1sa => 'Int
required => 1,

)

)
J
)

Friday, August 9, 13

So, this just works, because it's a built-in type. To get the bareword types, we use a "type
library." For example, there's a type library that gives us the bareword-style types for the
built-in types.

package Network: :Socket;
use MooseX: :Types: :Moose gw(Int);

has port => (
1S => 'ro',
1sa => Int,
required => 1,

)

Friday, August 9, 13
We say that we want to use the Int type from the core moose types, and now we can un-
guote Int. We can also combine these bareword types...

package Sequence;

use MooseX: :Types: :Moose
gw(ArrayRef Int);

has sequence => (
1S => 'ro',
1sa => ArrayRef[Int],
required => 1,

)

Friday, August 9, 13

This is where people start freaking out. "What the hell is that? This is a source filter, right?
Are you screwing with the parser to make this work? How will this interact with my Charm

203

Person spell?”

No, there is no magic. Moose is Perl. The fact that we're importing this stuff should be a
hint...

package Sequence;

use MooseX: :Types: :Moose
gw(ArrayRef Int);

has sequence => (

1S => 'ro',
1sa => ArrayRef([Int()]),
required => 1,

)

Friday, August 9, 13

...they're just functions! What we're doing is nearly equivalent to this code —- but much,
much less awful to look at. | will never write these parens. Just roll with it, man.

package Sequence;

use MooseX: :Types: :Moose
gw(ArrayRef Int);

has sequence => (
1S => 'ro',
1sa => ArrayRef[Int],
required => 1,

)

Friday, August 9, 13 205

Okay, so this is nice to look at, and everything, but why do we want to bother with having to
import stuff? After all, this would work just fine...

package Sequence;

has sequence => (
1S => 'ro',
1sa => 'ArrayRef[Int]°',
required => 1,

)

Friday, August 9, 13 206
...and it sure is a lot less typing! Well, the big win is code re-use. Looking only at the core
types isn't the best example. The big win with bareword types —- which we tend to call
"MooseX types" —- is that we can package them up for people to use just the way we used

MooseX::Types:.:Moose.

my $dist = CPAN::Dist->new({
prereqs => {
'"Thing: :Plugin: :Debug' => '1.203",
'"Thing: :Plugin: :SSL’ => '0.2",
'Thing: :Plugin: :0Auth' => '2.16.2",
5,

Friday, August 9, 13 207
So, for example, we want to write a library that works like this... what are we defining here?

Well, it's a hashref that maps package names to version numbers. We want to validate every
part of this.

has prereqgs => (

1sa => "HashRef[Str]",

)

my $dist = CPAN::Dist->new({
prereqgs => {
'"Thing: :Plugin: :Debug’ => '1.203",
'Thing: :Plugin::SSL' = "'0.2",
'"Thing: :Plugin: :0Auth’ => '2.16.2",

usable type libraries from the CPAN, we can do this...

has preregs => (

*)

1sa => Map|[PackageName, LaxVersionStr],

)

my $dist = CPAN::Dist->new({
prereqgs => {
'"Thing: :Plugin: :Debug’ => '1.203",
'Thing: :Plugin::SSL' = "'0.2",
'"Thing: :Plugin: :0Auth’ => '2.16.2",

Friday, August 9, 13
Now we require that it's a map -- which means a hashref -- where all the keys are valid

package names and all the values are valid "lax"” Perl version strings.

has prereqgs => (

e o ,

1sa => Map|[PackageName, LaxVersionStr],

)

my $dist = CPAN::Dist->new({
prereqgqs => {
'"Thing: :Plugin: :Debug’ => "1.203",
'Thing: :Plugin::SSL' => "0.2",
"Thing: :Plugin:0Auth' => "2.16.2",

Name.

has prereqgs => (

e o ,

1sa => Map|[PackageName, LaxVersionStr],

)

my $dist = CPAN::Dist->new({
prereqgqs => {
'"Thing: :Plugin: :Debug’ => "1.203",
'Thing: :Plugin::SSL' => "0.2",
'Thing: :Plugin: :0Auth’ => "2..1.2",

package Network::Socket: :Noisy;

has xmitter => (

1s => 'ro',
does => 'Transmitter',
required => 1,

)

Friday, August 9, 13 212

Remember this guy? Here, we were saying we wanted to require something that included a
certain role. This is just a type constraint of another name. This will come up a lot. You'll
want an attribute whose value is known to conform to a certain interface. By far, | think the

most common way to do that is with 'does’ but there are lots of reasons you might not be
able to.

The code here is just sugar for...

package Network: :Socket: :Noisy;
use MooseX: :Types; # this gets us role_type

has xmitter => (
1s => 'ro',
1sa => role_type('Transmitter'),
required => 1,

)

Friday, August 9, 13 213

the "does" argument to "has" is just sugar for this. it makes a "role type" and uses that as the
type constraint. role_type isn't the only type generator, either, of course.

Let's look at an example from some of my real code.

package Dist::Zilla: :Chrome;

has logger => (
1s => 'ro',

does => 'Log::Dispatchouli’,

);..

*)

Friday, August 9, 13

This says that our application's chrome needs to have a logger that does this logging role.
The problem is that Log::Dispatchouli (a) isn't a role and (b) isn't even Moose

We need a way to fall back on the old way of testing for interface: inheritance and isa.

package Dist::Zilla: :Chrome;

has logger => (
1S => 'ro'
1sa =

)

> 'Log::Dispatchouli’,

[] [] [,

)

Friday, August 9, 13

215
Notice that | used a string. Well, this will *probably* work. | think it's a bad idea, though.
There are a lot of quirks regarding how class names get interpreted as a string type, because

Perl doesn't have first-class class objects —- (explain) -- and that's what's happening here.
We're using that "string type" system that we said we should avoid.

package Dist::Zilla::Chrome;
use MooseX: :Types;

has logger => (

1s => 'ro',
1sa => class_type('Log: :Dispatchouli'),

);“

Friday, August 9, 13 216

This is what we really want to write. It will require that the value is an instance of a class that
isa Log::Dispatchouli.

Finally, sometimes this isn't enough, either. The reason why is simple, and we've talked
about it before...

package Network: :Socket;
use Moose;

sub send_string { ... }
sub send_lines { ... }

package Blob;

sub send_to {
my ($self, $target) = @_;

confess "can't send to $target”
unless $target->isa('Network: :Socket');

$target->send_string($self->contents);

¥

Friday, August 9, 13 217

Here, we wanted a way to get passed some object and assert that it had the interface we
wanted. The problem was that for somebody else to write a new kind of thing that could be a
$target, they had to inherit all kinds of other methods we don't want, and we're implying to

the next maintenance programmer that all those methods are fair game. Do not want!

has logger => (

1s = 'ro',
1sa => class_type('Log: :Dispatchouli’),

[] [] [] ,

)

Friday, August 9, 13
Well, this is doing the same thing! We're saying that it has to be a subclass of

Log::Dispatchouli. Maybe that's what we want, but if all we want is to demand a method or
two, then our constraint is too constrictive. What we really want is a role, but we're dealing

with poor old legacy code that doesn't have role composition.

The answer we talked about earlier was...

package Network: :Socket;
use Moose;

sub send_string { ... }
sub send_lines { ... }

package Blob;

sub send_to {
my ($self, $target) = @_;

confess "can't send to $target”
unless $target->can('send_string');

$target->send_string($self->contents);

¥

Friday, August 9, 13 219

"If it can answer this method, it's good enough!” also expressed as "If it quacks like a duck,
it's a duck.” We rejected this because roles are better. They let us not just say THAT we have
a method but what kind of interface it promises.

Well, that's great, but that only helps us with Moose classes! Duck typing is really, really
useful if you're dealing with some kind of legacy class that doesn't support roles.

has logger => (
1s = 'ro',
1sa => duck_type(['log', 'log_debug' 1),

[] [] [] ,

)

Friday, August 9, 13

220

Ta daaaa! Now we need to provide *any object* as long as it says it will respond to all those
methods.

If we pass in something we thought was okay, but that fails the type constraint, we even get a
nice error message like this...

Log: :Logger 1s missing methods 'log_debug’

package Employee;

has favorite_beatle => (

1S => "'w',
required => 1,

)

Friday, August 9, 13
One more kind of type is worth mentioning. Let's say we're going to keep track of each
employee's favorite Beatle.

package Employee;

has favorite_beatle => (
1s => 'rw',
1sa => enum([gw(John Paul George)]),
required => 1,

)

Friday, August 9, 13
There are only a few possible values here, so we can just enumerate them!

package Blob;

sub send_to {
my ($self, $target) = @_;

confess "can't send to $target”
unless $target->does('Transmitter');

$target->send_string($self->contents);
3

Friday, August 9, 13

The last word on types, for now: let's look at that send_to method again. Here's what we

ended up doing, and that's great. But what if we wanted to require a duck type? Or some
other complicated type?

We've only been using types as the "isa" attribute on an attribute, but here we want to use a
type in the body of a method. This couldn't be easier.

package Blob;

sub send_to {
my ($self, $target) = @_;

my $type = duck_type(['send_string' 1);
$type->assert_valid($target);

$target->send_string($self->contents);

¥

Friday, August 9, 13 225
Types are just objects. We get the type we want, then we assert that our input is a valid
example of that type. If itis, the program carries on. If it isn't, we fail with the same kind of
exception we saw before —- "lacks is missing methods send_string," in this case.

...could also just write this...

package Blob;

sub send_to {
my ($self, $target) = @_;

duck_type(['send_string'])
->assert_valid($target);

$target->send_string($self->contents);

¥

Friday, August 9, 13
or, if we're worried about the cost of building these types over and over...

package Blob;

sub send_to {
my ($self, $target) = @_;

state $type = duck_type(['send_string']);
$type->assert_valid($target);

$target->send_string($self->contents);

¥

Friday, August 9, 13

checkpoint: types

® types let you limit possible values for
attributes

® we have a nice set of core "string" types

® MooseX: Types libraries give us more types

checkpoint: types

® role type
® class type
® duck type

® ecnum

® we can use types outside of "has”

Moose::Object

package Employee;
use Moose;
has name => (1s => 'ro');

||

has title => (is => 'rw');

Friday, August 9, 13 231

Moose::Object is what you ISA when you use Moose. You get a constructor, and any object
we make with Moose can be easily dumped. Basically, $object->dump is just
Dumper($object).

package Employee;

use Moose;

has name => (1s => 'ro');
has title => (i1s => 'rw');

my $employee = Employee->new({
name => 'J. Fred Bloggs',
title => "Hat Sharpener’',

})

Friday, August 9, 13 231

Moose::Object is what you ISA when you use Moose. You get a constructor, and any object
we make with Moose can be easily dumped. Basically, $object->dump is just
Dumper($object).

package Employee;

use Moose;

has name => (1s => 'ro');
has title => (i1s => 'rw');

my $employee = Employee->new({
name => 'J. Fred Bloggs',
title => "Hat Sharpener’',

})

say $employee->dump;

Friday, August 9, 13 231

Moose::Object is what you ISA when you use Moose. You get a constructor, and any object
we make with Moose can be easily dumped. Basically, $object->dump is just
Dumper($object).

package Employee;

use Moose;

has name => (1s => 'ro');
has title => (i1s => 'rw');

my $employee = Employee->new({
name => 'J. Fred Bloggs',
title => "Hat Sharpener’',

})

say $employee->dump;

$VAR1 = bless({
'name’' => 'J. Fred Bloggs',
'title' => 'Hat Sharpener’
}, 'Employee’);

Friday, August 9, 13

Moose::Object is what you ISA when you use Moose. You get a constructor, and any object
we make with Moose can be easily dumped. Basically, $object->dump is just
Dumper($object).

231

$VAR1 = bless({
'name’ => 'J. Fred Bloggs',

'title' => 'Hat Sharpener’
}, "Employee');

Friday, August 9, 13 232

By the way, notice that we just got a hashref dump, here? Moose::Objects are pretty much
always hashes, although they don't need to be. Do not be tempted by this knowledge,
though. If you ever screw around with the internals of the hashref, you are doing it wrong.

Anyway, dump is nice and handy, but it's definitely the least interesting feature offered by
Moose::Object.

Error->new({
message => "Permission denied.",

1)

Friday, August 9, 13 233
A much more interesting feature is BUILDARGS. Let's say we have some class for error
reports, and it's only got one required parameter, "message.” Having to give the name every
time is a drag.

BUILDARGS lets us pre-process the arguments given to "new"

package Error;
use Moose;

override BUILDARGS => sub {
my $class = shift;

if (@_ == 1 and Str->check($_[0])) {
return { message => $_[0] };

¥

return super;

s

Friday, August 9, 13 234
We can add this BUILDARGS to Error. Let's read through it. If, after the class (the invocant),
there is exactly one argument, and it's a string, replace it with named args: (message =>
the_string). Otherwise, just do the usual thing.

Error->new({
message => "Permission denied.",

1)

Error->new("Permission denied.");

Friday, August 9, 13 235
So now we can write either of these.

BUILD and DEMOLISH

Class

Subclass

Subsub

Friday, August 9, 13

236

These are the interesting things you get from Moose::Object. BUILD and DEMOLISH. They're

run just after initialization (new) and upon object destruction. The interesting thing is how
they work.

Let's say we have this class hierarchy. (describe order of build/demolish)

BUILD and DEMOLISH

BUILD (1) Class

Subclass

Subsub

Friday, August 9, 13

236

These are the interesting things you get from Moose::Object. BUILD and DEMOLISH. They're

run just after initialization (new) and upon object destruction. The interesting thing is how
they work.

Let's say we have this class hierarchy. (describe order of build/demolish)

BUILD and DEMOLISH

BUILD (1) Class

Subclass

' Subsub

Friday, August 9, 13

236

These are the interesting things you get from Moose::Object. BUILD and DEMOLISH. They're

run just after initialization (new) and upon object destruction. The interesting thing is how
they work.

Let's say we have this class hierarchy. (describe order of build/demolish)

BUILD and DEMOLISH

BUILD (1) Class

BUILD (2) | Subclass

Subsub

Friday, August 9, 13

236
These are the interesting things you get from Moose::Object. BUILD and DEMOLISH. They're
run just after initialization (new) and upon object destruction. The interesting thing is how
they work.

Let's say we have this class hierarchy. (describe order of build/demolish)

BUILD and DEMOLISH

BUILD (1) Class

BUILD (2) | Subclass

* BUILD (3) | Subsub

Friday, August 9, 13

236
These are the interesting things you get from Moose::Object. BUILD and DEMOLISH. They're
run just after initialization (new) and upon object destruction. The interesting thing is how
they work.

Let's say we have this class hierarchy. (describe order of build/demolish)

BUILD and DEMOLISH

BUILD (1) Class

BUILD (2)

Subclass

* BUILD (3) | Subsub | DEMOLISH (1)

Friday, August 9, 13

236
These are the interesting things you get from Moose::Object. BUILD and DEMOLISH. They're
run just after initialization (new) and upon object destruction. The interesting thing is how
they work.

Let's say we have this class hierarchy. (describe order of build/demolish)

BUILD and DEMOLISH

BUILD (1) Class

BUILD (2)

Subclass

* BUILD (3) | Subsub

Friday, August 9, 13

DEMOLISH (1)

236
These are the interesting things you get from Moose::Object. BUILD and DEMOLISH. They're

run just after initialization (new) and upon object destruction. The interesting thing is how
they work.

Let's say we have this class hierarchy. (describe order of build/demolish)

BUILD and DEMOLISH

BUILD (1) Class

BUILD (2) | Subclass | DEMOLISH (2)

* BUILD (3) | Subsub | DEMOLISH (1)

Friday, August 9, 236
These are the interesting things you get from Moose::Object. BUILD and DEMOLISH. They're

run just after initialization (new) and upon object destruction. The interesting thing is how
they work.

Let's say we have this class hierarchy. (describe order of build/demolish)

BUILD and DEMOLISH

BUILD (1) Class DEMOLISH (3) ,

BUILD (2) | Subclass | DEMOLISH (2)

* BUILD (3) | Subsub | DEMOLISH (1)

Friday, August 9, 236
These are the interesting things you get from Moose::Object. BUILD and DEMOLISH. They're

run just after initialization (new) and upon object destruction. The interesting thing is how
they work.

Let's say we have this class hierarchy. (describe order of build/demolish)

BUILD and DEMOLISH

BUILD (1) Class DEMOLISH (3) ,

BUILD (2) | Subclass | DEMOLISH (2)

* BUILD (3) | Subsub | DEMOLISH (1)

DEMOLISH can be useful in limited circumstances. It's good for graceful shutdown of
resources, just like DESTROY in legacy objects. The fact that it's called incrementally just
makes DESTROY methods easier to write. BUILD is much more interesting. BUILD can be
used to do complex validation of state.

package Employee;
has username => (
lazy => 1,
default => sub {
my ($uname) = split /@/, $_[0]->email;
return $uname;

},
)

has email => (
lazy => 1,
default => sub {
return $_[0]->username . g{@example.com};

},
)

Friday, August 9, 13 238
It's time to let our employees have accounts on the internets. Since email and username can
be inferred from one another, we should be able to define things in terms of each other. We
can compute username from email or email from username. The problem is that if NEITHER
is given, we'll have deep recursion. We can't mark either one of these required, because we
want to allow at most one of them to be blank. So, we need a way to check the validity of the
data. BUILD!

package Employee;

sub _sanity_check_username {
my ($self) = @_;

confess "one of username/email required”
unless $self->has_username
or $self->has_email;

confess "username/email mismatch”
if $self->has_username
and $self->has_email
and ...;

¥

Friday, August 9, 13 239

First, we just write a little routine that sanity checks the username/email combination. If
neither is given, we die.

If both are given and they don't match our rules, we die.

package Employee;

sub _sanity_check_username { ... }

sub BUILD {
my ($self) = @_;

$self->_sanity_check_username;

¥

Friday, August 9, 13

240
With that written, it's a simple matter to go ahead and tell BUILD to run that sanity check on
every new object. Even though it can't be expressed in a type, we can enforce this.

By putting it in its own method, rather than directly in BUILD, we can call it from other places,
like triggers, after clearing attributes, and so on.

package Network::Client;

has config => (
1sa => 'HashRef',
required => 1,
default => sub {
parse_ini_file("client.1n1"),

¥
)

has hostname => (
1sa => HostName,
default => sub {
my ($self) = @_;
return $self->config->{host};

¥
)

Friday, August 9, 13 241
This can be a really confusing bug.

This looks okay, right? We get config from an ini file and then the hostname from the config.

...and it is okay, too. Sometimes, but...

my $client = Network::Client->new;

SOMETIMES...
Can't use an undefined value as a
HASH reference

riday, August 9,
What? How can this happen?

package Network::Client;

has config => (
1sa => 'HashRef',
required => 1,
default => sub {
parse_ini_file("client.1n1"),

¥
)

has hostname => (
1sa => HostName,
default => sub {
my ($self) = @_;
return $self->config->{host};

¥
)

Friday, August 9, 13 243
This looks like it should just work, right? | promise the config file is there and valid. But if
we scrutinize the stack trace, the (undef->{}) is coming from here

package Network::Client;

has config => (
1sa => 'HashRef',
required => 1,
default => sub {
parse_ini_file("client.1n1"),

¥
)

has hostname => (
1sa => HostName,
default => sub {
my ($self) = @_;
return $self->config->{host};

},
)

Friday, August 9, 13 244
Well, the problem is that attribute initialization order is undefined. It's basically hash-storage
order. "config" isn't guaranteed to be initialized before we try to get the hostname out of it
so we have two scenarios...

undefined init order

undefined init order

|. config is initialized

undefined init order

|. config is initialized

2. hostname is initialized

undefined init order

|. config is initialized
2. hostname is initialized

3. everything is good

undefined init order

Friday, August 9, 13 246
Type constraints will catch this, but it's still wrong.

undefined init order

|. hostname initialized is attempted first

Friday, August 9, 13 246
Type constraints will catch this, but it's still wrong.

undefined init order

|. hostname initialized is attempted first

2. everything blows up

Friday, August 9, 13 246
Type constraints will catch this, but it's still wrong.

undefined init order

|. hostname initialized is attempted first
2. everything blows up

3. despair

Friday, August 9, 13 246
Type constraints will catch this, but it's still wrong.

package Network::Client;

has config => (
1sa => 'HashRef',
required => 1,
default => sub {
parse_ini_file("client.1n1"),

[
)

has hostname => (
1sa => HostName,
lazy => 1,
default => sub {
my ($self) = @_;
return $self->config->{host};

[
)

Friday, August 9, 13 247
We can mark hostname lazy, and then we know it won't be initialized until it's accessed, so
we're probably safe. But there are two problem cases to be wary of.

package Network::Client;

has config => (C ...);

has hostname => (

1sa => HostName,

lazy => 1,

default => sub {
my ($self) = @_;

return $self->config->{host};

},
DK
has host_1p => (

1sa => IPAddress,

default => sub { ...; resolve($self->hostname) }
DK

Friday, August 9, 13

248
This is no good, again. hostname is still lazy, so it won't be initialized until requested -- but
now host_ip requests it, and it isn't lazy! So now if host_ip is initialized before config, we get
an even WEIRDER case. You need to make anything that uses hostname in its default or
builder ALSO lazy.

package Network::Client;
has config => (C ...);

has hostname => (
1sa => HostName,

);...

has host_ip => (
1sa => IPAddress,

);...

Friday, August 9, 13 249

...that leads us to our next problem. We're not adding this laziness to be efficient, we're
adding it to make things sane. The downside is that now if everything is lazy, we don't know
about type violations until potentially really late in the game —-- well after initialization. We
have an object that's just waiting to throw an exception, and we want to CRASH EARLY.

package Network::Client;
has config => (...);

has hostname => (..., 1sa => HostName);
has host_1p => (..., 1sa => IPAddress);

sub BUILD {
my ($self) = @_;
$self->hostname;
$self->host_ip;

¥

Friday, August 9, 13 250
This is where BUILD comes in.

checkpoint:
Moose::Obiject

® dump

o BUILDARGS
e DEMOLISH, self first, upward

checkpoint: BUILD

® BUILD, furthest ancestor first, downward
® useful for enforcing complex constraints

® useful for mitigating the need to use lazy

Defining Types

Friday, August 9, 13 253

So, now we've talked about using the Moose core types and type libraries from the CPAN to
validate your data. We also looked at using BUILD to validate state. Sometimes, though, this
isn't enough, and in order to make your code easy to read and write, you need to define your

own custom types.

defining types is weird

Friday, August 9, 13

254
There are two ways to define types, and both are pretty weird. There's stringy types —— which

| won't be using at all -- and MooseX types. Most of the time, you will be much better off
writing MooseX types. The rest of the time, you'd probably break even.

Like | said, though, the interface is weird. This is just a warning. Let's get down to it.

package Network: :Socket;

has address => (
1S => 'ro',
1sa => 'Str',
required => 1,

)

has port => (
1S => 'ro',
1sa => 'Int',
required => 1,

)

Friday, August 9, 13

So, our network socket needs to talk to an IP address. Right now, we're just requiring a
string, which obviously sucks a lot. Even the port requirement isn't great. -12 and
6,000,000 aren't valid port numbers. We're going to write a type library. That's just a Perl

module that will contain related types for us to re-use later.

package Network: :Types;

use MooseX: :Types -declare => [gw(
IPAddress PortNumber

)15

1.

b

Friday, August 9, 13

256
The first thing we do is make our new package; I'm not omitting anything, here. We don't
need use strict, because MXT will turn that on for us. We probably don't even need
namespace::autoclean because Network::Types isn't a class. It's just a library full of types

that we can import. The arguments to -declare are the names of types we plan to define in
this library.

package Network: :Types;
use MooseX::Types -declare => [...];

use MooseX: :Types: :Moose gw(Int Str);

Friday, August 9, 13
Then we bring in Int and Str from MXT::Moose, because we're going to use those as base
types.

package Network: :Types;
use MooseX: :Types -declare =>
[gw(IPAddress PortNumber)];

use MooseX: :Types: :Moose gw(Int Str);

subtype IPAddress, as Str, where {
my @quads = split /\./;
return unless 4 == @quads;

for (@quads) {
return if /[20-9]/ or $_ > 255 or $_ < O;

¥

return 1;

s

258

Friday, August 9, 13
...then comes the good part. We say: make a subtype using the "IPAddress” name that |

declared earlier; it's a subtype of Str, so anything Str requires is required of IPAddress, too --
in other words, it can't be an ArrayRef, etc. Then add this callback as an additional test.

package Network: :Types;
use MooseX: :Types -declare =>
[gw(IPAddress PortNumber)];

use MooseX: :Types: :Moose gw(Int Str);
subtype IPAddress, as Str, where { ... };

subtype PortNumber, as Int, where {
$_ > 0 and $_ < 2**16

s

Friday, August 9, 13
PortNumber is even easier to define.

| think that as long as we're writing this network library, we might as well flesh it out a little...

package Network: :Types;
use MooseX: :Types -declare =>
[gw(IPAddress PublicIPAddress PortNumber)];
use MooseX: :Types: :Moose gw(Int Str);
subtype IPAddress, as Str, where { ... };

subtype PortNumber, as Int, where { ... };

Friday, August 9, 13

Let's add a PubliclPAddress type.

package Network: :Types;
use MooseX: :Types -declare =>
[gw(IPAddress PublicIPAddress PortNumber)];

use MooseX: :Types: :Moose gw(Int Str);
subtype IPAddress, as Str, where { ... };

subtype PublicIPAddress, as IPAddress, where {
return ! /\A127\./ and ! /\A1O0\./ ...;

j

subtype PortNumber, as Int, where { ... };

Friday, August 9, 13
See? We can subtype anything we want.

package Network: :Socket;

has address => (
1S => 'ro
1sa => 'Str',
required => 1,

)

has port => (
1S => 'ro',
1sa => 'Int',
required => 1,

)

Friday, August 9, 13
Now we can go back to our Socket class...

package Network: :Socket;
use Network: :Types gw(IPAddress PortNumber);

has address => (
1S => 'ro
1sa => 'Str',
required => 1,

)

has port => (
1s => 'ro',
1sa => 'Int',
required => 1,

)

Friday, August 9, 13
import the types we want from our type library

package Network: :Socket;
use Network: :Types gw(IPAddress PortNumber);

has address => (
1s => 'ro',
1sa => IPAddress,
required => 1,

)

has port => (
1s => 'ro',
1sa => PortNumber,
required => 1,

)

Friday, August 9, 13
...and use them. So, this is great! We have nice, useful domain-specific data validation.

Everything is sunshine and roses until some knucklehead tries to open this socket:

my $socket = Network: :Socket->new({
address => '127.0.0.1",

port => 'http',

£);

Friday, August 9, 13 265
The address is valid, but the port isn't. We said a port has to be a number between 0 and
65,535 -- but you know what, this is totally valid. Perl has a built in way to turn http into 80,
so let's use it!

package Network: :Types;
use MooseX::Types -declare =>
[gw(... PortNumber ServiceName)];

use MooseX: :Types: :Moose gw(Int Str);
subtype PortNumber, as Int, where { ... };

subtype ServiceName, as Str, where {
my $port = getservbyname($_, 'tcp');
return defined $port;

j

Friday, August 9, 13 266

So, now we have a type that allows any service name for which we can find a port. We could
go forward and do this...

has port => (
1s => 'ro',
1sa => PortNumber | ServiceName,
required => 1,

)

Friday, August 9, 13

267
...and this would work! We can "or" together types to get type unions. In general, though, we

don't want to do this. It's *much* more useful to be able to rely on the accessor always
returning the same kind of data. We want to know that ->port is always a number. So, what

do we do? We're going to teach our type library how to turn a ServiceName into a
PortNumber. This is called a coersion.

package Network: :Types;
use MooseX: :Types -declare =>
[gw(... PortNumber ServiceName)];

use MooseX: :Types: :Moose gw(Int Str);
subtype PortNumber, as Int, where { ... };

subtype ServiceName, as Str, where {

my $port = getservbyname($_, 'tcp');
return defined $port;

s

coerce PortNumber, from ServiceName, via {
scalar getservbyname($_, 'tcp');

s

Friday, August 9, 13 268

That's it! We say, "If something needs a PortNumber, and you know that you have a

ServiceName, you can get it by using this." If the thing that comes out of the coercion isn't a

valid PortNumber, Moose will still catch that and barf. We just have to go back to the
attribute definition...

has port => (
1s => 'ro',
1sa => PortNumber | ServiceName,
required => 1,

)

Friday, August 9, 13 269

We can get rid of the "| ServiceName" now, because we're not allowing that as the type of the
attribute value.

has port => (
1s => 'ro',
1sa => PortNumber,
required => 1,

)

Friday, August 9, 13 270
but knowing how to coerce isn't enough. We need to specifically mark the attribute as one
that will perform coersions when needed. This helps us coerce only input that we think
should be coerced.

has port => (
1S => 'ro’',
1sa => PortNumber,
coerce = 1,
required => 1,

)

Friday, August 9, 13
Without that (coerce => 1), we will not allow a ServiceName!

use Network: :Types gw(PortNumber);

say to_PortNumber('http');

Friday, August 9, 13 272
Finally, just like we saw using types in method bodies, we can use coersions. Importing the
type from the type library will also give us a to_Whatever routine that tries to coerce the given
value to the right type.

checkpoint:
defining types

® use 'MooseX:Types -declare” to write a
type library

® subtype New,as Old, where { ... }

® coerce New, from Old,via { ...}

Delegation

Delegation

Friday, August 9, 13 275

Roles are really great, but | think delegation is where it's at, and it's underused. What's great,
though, is that roles and delegation really complement one another.

Delegation

® delegation is another alternative to
inheritance

Friday, August 9, 13 275

Roles are really great, but | think delegation is where it's at, and it's underused. What's great,
though, is that roles and delegation really complement one another.

Delegation

® delegation is another alternative to
inheritance

® instead of including methods

Friday, August 9, 13 275

Roles are really great, but | think delegation is where it's at, and it's underused. What's great,
though, is that roles and delegation really complement one another.

Delegation

® delegation is another alternative to
inheritance

® instead of including methods

® pass them on to a delegate (or "proxy")

Friday, August 9, 13 275

Roles are really great, but | think delegation is where it's at, and it's underused. What's great,
though, is that roles and delegation really complement one another.

has xmitter => (
1s => 'ro',
does => 'Transmitter’,
required => 1

)

sub log {
my ($self, $level, $message) = @_;
return unless $level >= $self->level;
$self->xmitter->send_string($message);

¥

has level => (...);

Friday, August 9, 13 276

Let's go back, once again, to our noisy network socket. | think this was a pretty nice
refactoring, but this is a little gross:

has xmitter => (
1s => 'ro',
does => 'Transmitter',
required => 1

)

sub log {
my ($self, $level, $message) = @_;
return unless $level >= $self->level;
$self->xmitter->send_string($message);

¥

has level => (...);

Friday, August 9, 13 277

Every time we want to log some string, we're going to go through that method. It's not bad,
it's fine. We can just eliminate the middle bit like this...

has xmitter => (
1s => 'ro',
does => 'Transmitter’,
required => 1,
handles => ['send_string'],

)

sub log {

my ($self, $level, $message) = @_;
return unless $level >= $self->level;
$self->send_string($message);

¥

has level => (...);

Friday, August 9, 13

278
We say, "any call to the send_string method -- and please create that method for me, by the

way -- will go to the transmitter object.”

Now the noisy network socket has a send_string method, and it can call that directly. | don't

really like the name, though. It's the right behavior, but it's not in the idiom of the role,
which is a logger, not some kind of -- well —- transmitter. So we do this...

has xmitter => (
1s => 'ro',
does => 'Transmitter’,

required => 1,

handles => {
log_unconditionally =>"send_string'
5
);
sub log {

my ($self, $level, $message) = @_;
return unless $level >= $self->level;
$self->log_unconditionally($message);

¥

has level => (...);

Friday, August 9, 13 279
Now we're saying, "If someone calls log_unconditionally —-- and that gets created for us, again
—- pass it along to the transmitter.”

Now we're basically adding a new method to our role that will pass it along to whatever
transmitter we use when creating objects that use this role. Wuh? It's simple.

has xmitter => (
1s => 'ro',
does => 'Transmitter’,
required => 1

)

sub log {
my ($self, $level, $message) = @_;
return unless $level >= $self->level;
$self->xmitter->send_string($message);

¥

has level => (...);

Friday, August 9, 13 280
If this made sense —-- and it did, right? Then all we're doing is this:

has xmitter => (
1s => 'ro',
does => 'Transmitter',
required => 1

)

sub log_unconditionally {
my ($self, $message) = @_;
$self->xmitter->send_string($message);

¥

sub log {
my ($self, $level, $message) = @_,;
return unless $level >= $self->level;
$self->log_unconditionally($message);

¥

has level = (...);

Friday, August 9, 13 281

We're generating this helper method, but we're doing it in the attribute definition. Boy, "has”
sure can generate a lot of useful behaviors!

package Network: :Socket;
use Moose;

with 'Transmitter’;

sub send_string { ... }
sub send_lines { ... }

package Transmitter;
use Moose: :Role;

requires 'send_string';

Friday, August 9, 13 282
You may remember that eventually, to make the Network::Socket a viable way to log stuff, we
gave it this Transmitter role -— which did nothing other than show that we promise to
implement the send_string method. Let's take it a step further.

package Network: :Socket;

use Moose;

with 'Transmitter::Complex’;
sub send_string { ... }

Friday, August 9, 13 283

we're going to replace our use of Transmitter with Transmitter::Complex; it, too, will require
send_string, but then it will add some instrumentation around send_string, letting us get a log of how

many bytes we've sent or received. -- and note the "has [...]" semantics I'm using here for the first
time.

Then with send_string guaranteed to exist already, we can implement the rest of our complex

transmission interface in terms of it, like send_lines that we had before, and now a new stream_lines to
read stuff read from an IO handle.

package Network: :Socket;

use Moose;

with 'Transmitter::Complex’;
sub send_string { ... }

package Transmitter::Complex;

Friday, August 9, 13 283

we're going to replace our use of Transmitter with Transmitter::Complex; it, too, will require
send_string, but then it will add some instrumentation around send_string, letting us get a log of how

many bytes we've sent or received. -- and note the "has [...]" semantics I'm using here for the first
time.

Then with send_string guaranteed to exist already, we can implement the rest of our complex
transmission interface in terms of it, like send_lines that we had before, and now a new stream_lines to
read stuff read from an IO handle.

package Network: :Socket;

use Moose;

with 'Transmitter::Complex’;
sub send_string { ... }

package Transmitter::Complex;
use Moose: :Role;

Friday, August 9, 13

we're going to replace our use of Transmitter with Transmitter::Complex; it, too, will require
send_string, but then it will add some instrumentation around send_string, letting us get a log of how

many bytes we've sent or received. -- and note the "has [...]" semantics I'm using here for the first
time.

283

Then with send_string guaranteed to exist already, we can implement the rest of our complex

transmission interface in terms of it, like send_lines that we had before, and now a new stream_lines to
read stuff read from an IO handle.

package Network: :Socket;

use Moose;

with 'Transmitter::Complex’;
sub send_string { ... }

package Transmitter::Complex;
use Moose: :Role;
with 'Transmitter'; # requires 'send_string’

Friday, August 9, 13 283

we're going to replace our use of Transmitter with Transmitter::Complex; it, too, will require
send_string, but then it will add some instrumentation around send_string, letting us get a log of how

many bytes we've sent or received. -- and note the "has [...]" semantics I'm using here for the first
time.

Then with send_string guaranteed to exist already, we can implement the rest of our complex

transmission interface in terms of it, like send_lines that we had before, and now a new stream_lines to
read stuff read from an IO handle.

package Network: :Socket;

use Moose;

with 'Transmitter::Complex’;
sub send_string { ... }

package Transmitter::Complex;
use Moose: :Role;

with 'Transmitter'; # requires 'send_string’

around send_string => sub { ... };

Friday, August 9, 13 283

we're going to replace our use of Transmitter with Transmitter::Complex; it, too, will require
send_string, but then it will add some instrumentation around send_string, letting us get a log of how

many bytes we've sent or received. -- and note the "has [...]" semantics I'm using here for the first
time.

Then with send_string guaranteed to exist already, we can implement the rest of our complex

transmission interface in terms of it, like send_lines that we had before, and now a new stream_lines to
read stuff read from an IO handle.

package Network: :Socket;

use Moose;

with 'Transmitter::Complex’;
sub send_string { ... }

package Transmitter::Complex;
use Moose: :Role;
with 'Transmitter'; # requires 'send_string’

around send_string => sub { ... };

has [gw(bytes_sent bytes_rcvd)] => (

Friday, August 9, 13 283

we're going to replace our use of Transmitter with Transmitter::Complex; it, too, will require
send_string, but then it will add some instrumentation around send_string, letting us get a log of how

many bytes we've sent or received. -- and note the "has [...]" semantics I'm using here for the first
time.

Then with send_string guaranteed to exist already, we can implement the rest of our complex

transmission interface in terms of it, like send_lines that we had before, and now a new stream_lines to
read stuff read from an IO handle.

package Network: :Socket;

use Moose;

with 'Transmitter::Complex’;
sub send_string { ... }

package Transmitter::Complex;
use Moose: :Role;

with 'Transmitter'; # requires 'send_string'
around send_string => sub { ... };

has [gw(bytes_sent bytes_rcvd)] => (

1s = 'rw', 1sa => 'Int’,

Friday, August 9, 13 283

we're going to replace our use of Transmitter with Transmitter::Complex; it, too, will require
send_string, but then it will add some instrumentation around send_string, letting us get a log of how

many bytes we've sent or received. -- and note the "has [...]" semantics I'm using here for the first
time.

Then with send_string guaranteed to exist already, we can implement the rest of our complex

transmission interface in terms of it, like send_lines that we had before, and now a new stream_lines to
read stuff read from an IO handle.

package Network: :Socket;

use Moose;

with 'Transmitter::Complex’;
sub send_string { ... }

package Transmitter::Complex;
use Moose: :Role;
with 'Transmitter'; # requires 'send_string’

around send_string => sub { ... };

has [gw(bytes_sent bytes_rcvd)] => (
1s = 'rw', 1sa => 'Int’,

)

Friday, August 9, 13 283

we're going to replace our use of Transmitter with Transmitter::Complex; it, too, will require
send_string, but then it will add some instrumentation around send_string, letting us get a log of how

many bytes we've sent or received. -- and note the "has [...]" semantics I'm using here for the first
time.

Then with send_string guaranteed to exist already, we can implement the rest of our complex

transmission interface in terms of it, like send_lines that we had before, and now a new stream_lines to
read stuff read from an IO handle.

package Network: :Socket;

use Moose;

with 'Transmitter::Complex’;
sub send_string { ... }

package Transmitter::Complex;
use Moose: :Role;
with 'Transmitter'; # requires 'send_string’

around send_string => sub { ... };
has [gw(bytes_sent bytes_rcvd)] => (
1s = 'rw', 1sa => 'Int’,

)

sub send_lines { ... }

Friday, August 9, 13 283

we're going to replace our use of Transmitter with Transmitter::Complex; it, too, will require
send_string, but then it will add some instrumentation around send_string, letting us get a log of how

many bytes we've sent or received. -- and note the "has [...]" semantics I'm using here for the first
time.

Then with send_string guaranteed to exist already, we can implement the rest of our complex

transmission interface in terms of it, like send_lines that we had before, and now a new stream_lines to
read stuff read from an IO handle.

package Network: :Socket;

use Moose;

with 'Transmitter::Complex’;
sub send_string { ... }

package Transmitter::Complex;
use Moose: :Role;
with 'Transmitter'; # requires 'send_string’

around send_string => sub { ... };

has [gw(bytes_sent bytes_rcvd)] => (
1s = 'rw', 1sa => 'Int’,

)

sub send_lines { ... }
sub stream_lines { my ($self, $fth) = @_; ... }

Friday, August 9, 13
we're going to replace our use of Transmitter with Transmitter::Complex; it, too, will require

283

send_string, but then it will add some instrumentation around send_string, letting us get a log of how

many bytes we've sent or received. -- and note the "has [...]" semantics I'm using here for the first

time.

Then with send_string guaranteed to exist already, we can implement the rest of our complex

transmission interface in terms of it, like send_lines that we had before, and now a new stream_lines to

read stuff read from an IO handle.

package Transmitter::Complex;

use Moose: :Role;

with 'Transmitter'; # requires 'send_string’
around send_string => sub { ... };

has [gw(bytes_sent bytes_rcvd)] => (C ...);

sub send_lines { ... }
sub stream_lines { my ($self, $fh) = @_; ... }

package Network::Client::HTTP;
has socket => (
1s => 'ro',
does => 'Transmitter::Complex’,
required => 1,

)

Friday, August 9, 13

So, now we want to use this socket class in some library, and we want to be able to rely on all that

stuff. This is what we would have done up until now —- we know we have an object with all the

284

behavior that Transmitter::Complex promises, so we can go call methods on socket. This gets back to
that ugly chain of methods we had earlier, though. We don't want that, we want methods right on our

client object.
EASY!

package Transmitter::Complex;
use Moose: :Role;

with 'Transmitter'; # requires 'send_string’

around send_string => sub { ... };

has [gw(bytes_sent bytes_rcvd)] => ();
sub send_lines { ... }

sub stream_lines { my ($self, $fh) = @_; ... }

package Network::Client::HTTP;
has socket => (

1s => 'ro',
does => 'Transmitter::Complex',
required => 1,
handles => 'Transmitter::Complex’,
);
Frday, Augusts, 13
That's it!

Moose does its best to let you put together units of functionality in the most straightfoward ways
possible. You could also write the above as...

285

package Transmitter::Complex;
use Moose: :Role;
with 'Transmitter'; # requires 'send_string’

around send_string => sub { ... };

has [gw(bytes_sent bytes_rcvd)] == (...);
sub send_lines { ... }

sub stream_lines { my ($self, $fh) = @_; ... }

package Network::Client: :HTTP;
has socket => (
1s => 'ro',
1sa => role_type('Transmitter::Complex'),
required => 1,
handles => role_type('Transmitter::Complex'),

)

Friday, August 9, 13 286

So, is Moose is doing its best to let us re-use and compose code in these ways, how do we integrate
with something non-Moose? Well, it's obvious, right?

my $log_type = duck_type([gw(log log_debug) 1);

1s => 'ro',
1sa => $log_type,
required => 1,

)

has logger => (

Friday, August 9, 13 287
We had code like this earlier, using to let us demand and rely on a small set of methods to be
provided by a non-Moose (or Moose!) class. We want to also delegate these methods to
remove the chained ->logger-> call, and that's easy.

my $log_type = duck_type([gw(log log_debug) 1);

has logger => (
1s => 'ro',
1sa => $log_type,
required => 1,
handles => $log_type,

)

Friday, August 9, 13 288

In other words, if we use a duck type as the "handles"” value, we delegate exactly all those
methods that the duck type required in the first place.

Friday, August 9, 13 289
Finally, | present, for sheer comedy value, the silliest kind of delegation you can perform.

You can delegate by regex —- RARELY a good idea —-- and you can make that regex mean
"everything." Don't do this! But notice the good thing reflected in this feature: that despite
trying to encourage consistent behavior among Perl programmers, Moose is still Perl: it's
giving you plenty of rope to hang yourself quickly and efficiently.

has logger => (

Friday, August 9, 13 289
Finally, | present, for sheer comedy value, the silliest kind of delegation you can perform.

You can delegate by regex —- RARELY a good idea —-- and you can make that regex mean
"everything." Don't do this! But notice the good thing reflected in this feature: that despite
trying to encourage consistent behavior among Perl programmers, Moose is still Perl: it's
giving you plenty of rope to hang yourself quickly and efficiently.

has logger => (

1s => 'ro',

Friday, August 9, 13 289
Finally, | present, for sheer comedy value, the silliest kind of delegation you can perform.

You can delegate by regex —- RARELY a good idea —-- and you can make that regex mean
"everything." Don't do this! But notice the good thing reflected in this feature: that despite
trying to encourage consistent behavior among Perl programmers, Moose is still Perl: it's
giving you plenty of rope to hang yourself quickly and efficiently.

has logger => (

1s => 'ro',
1sa => 'Object’,

Friday, August 9, 13 289
Finally, | present, for sheer comedy value, the silliest kind of delegation you can perform.

You can delegate by regex —- RARELY a good idea —-- and you can make that regex mean
"everything." Don't do this! But notice the good thing reflected in this feature: that despite
trying to encourage consistent behavior among Perl programmers, Moose is still Perl: it's
giving you plenty of rope to hang yourself quickly and efficiently.

has logger => (
1s => 'ro',
1sa => 'Object’,
required => 1,

Friday, August 9, 13 289
Finally, | present, for sheer comedy value, the silliest kind of delegation you can perform.

You can delegate by regex —- RARELY a good idea —-- and you can make that regex mean
"everything." Don't do this! But notice the good thing reflected in this feature: that despite
trying to encourage consistent behavior among Perl programmers, Moose is still Perl: it's
giving you plenty of rope to hang yourself quickly and efficiently.

has logger => (
1s => 'ro',
1sa => 'Object’,
required => 1,
handles => gr/.*/,

Friday, August 9, 13 289
Finally, | present, for sheer comedy value, the silliest kind of delegation you can perform.

You can delegate by regex —- RARELY a good idea —-- and you can make that regex mean
"everything." Don't do this! But notice the good thing reflected in this feature: that despite
trying to encourage consistent behavior among Perl programmers, Moose is still Perl: it's
giving you plenty of rope to hang yourself quickly and efficiently.

has logger => (
1s => 'ro',
1sa => 'Object’,
required => 1,
handles => gr/.*/,

Friday, August 9, 13 289
Finally, | present, for sheer comedy value, the silliest kind of delegation you can perform.

You can delegate by regex —- RARELY a good idea —-- and you can make that regex mean
"everything." Don't do this! But notice the good thing reflected in this feature: that despite
trying to encourage consistent behavior among Perl programmers, Moose is still Perl: it's
giving you plenty of rope to hang yourself quickly and efficiently.

checkpoint: delegation

checkpoint: delegation

® installs "local” methods that proxy for
methods on an attribute

checkpoint: delegation

® installs "local” methods that proxy for
methods on an attribute

® you can delegate by a list of names

checkpoint: delegation

® installs "local” methods that proxy for
methods on an attribute

® you can delegate by a list of names

® or by the interface of a role

checkpoint: delegation

® installs "local” methods that proxy for

methods on an attribute

® you can delegate by a list of names
® or by the interface of a role

® or a duck type

checkpoint: delegation

® installs "local” methods that proxy for

methods on an attribute

® you can delegate by a list of names
® or by the interface of a role
® or a duck type

® or,so help you, a regular expression

warning: delegation

warning: delegation

® delegation is very useful

warning: delegation

® delegation is very useful

® but don't delegate too freely

warning: delegation

® delegation is very useful
® but don't delegate too freely

® cvery method you delegate makes your
public API bigger

warning: delegation

delegation is very useful
but don't delegate too freely

every method you delegate makes your
public API bigger

and makes future refactoring more difficult

Friday, August 9, 13

Traits

® "trait" is the name for roles in the original
research

® in Moose, a trait is a role we apply to an
Instance

Friday, August 9, 13
So, what does that even mean, applying a role to an instance?

package Network: :Socket: :Noisy;
use Moose;
extends 'Network::Socket';

after ['send_string', 'send_lines' | => sub {
my ($self) = @_;

say $self->describe_client_state;

s

Friday, August 9, 13 294
This is more or less what we said we would write for our noisy network socket. We extended
the socket and modified methods. Of course, now that isn't how we would write this any
more, right? We'd write this, instead...

package Network::Socket::Noisy;
use Moose: :Role;

after ['send_string', 'send_lines' | => sub {
my ($self) = @_;

say $self->describe_client_state;

s

Friday, August 9, 13 295
This is more or less what we said we would write for our noisy network socket. We extended
the socket and modified methods. Of course, now that isn't how we would write this any
more, right? We'd write this, instead...

...then we'd need a way to actually use that role, so we might write...

package Network::Socket::Noisy;
use Moose: :Role;

after ['send_string', 'send_lines' | => sub {
my ($self) = @_;

say $self->describe_client_state;

s

package Network::Socket::WithNoisy;
use Moose;

extends 'Network::Socket';

with 'Network: :Socket::Noisy';

Friday, August 9, 13 296
...but this is dumb. We don't want to have to make a class for every possible combination of
roles we might lump on top of a base class. We want roles to *save* us effort, not make us
do a lot of stupid nonsense work.

They do!

my $socket = Network::Socket->new({

*)

1)

Friday, August 9, 13
| just create an instance of the base class...

my $socket = Network::Socket->new({

*)

1)

Moose: :Util::apply_all_roles(
$socket,
"Network: :Socket: :Noisy',
"Network: :Socket::Lazy',
"Network: :Socket: :Surly’,

)

Friday, August 9, 13 298

Then | apply all the roles to it. This is great! In general, adding traits to instances is just that
easy.

Unfortunately, in this case, it isn't going to work. Anybody know why?

use Network: :Socket: :Noisy;

has xmitter => (

1S => 'ro',

required => 1,

)

Friday, August 9, 13

299
...it's because when we defined Network::Socket::Noisy, we had this attribute. It's required, so

we absolutely must have a value for it, and it's readonly, so we can't add it after we've created
the object. Um... oops? In this situation, Moose basically says, "Dude, you're adding traits to

objects at runtime. I'm just going to trust that you know what you're doing." Moose will
totally let you shoot yourself in the foot this way. (Actually, this particular problem is solved

these days, but it's demonstrative of a class of problems that are not entirely solved, nor can
they be.)

package Network: :Socket;
use Moose;

with 'Transmitter::Complex’;

sub send_string { ... }

Friday, August 9, 13 300

We go back to Network::Socket, and we say, "This is a class that we're definitely going to want
to decorate with other roles a lot. Let's make it easier.”

package Network: :Socket;
use Moose;

with 'MooseX::Traits',
"Transmitter: :Complex';

sub send_string { ... }

Friday, August 9, 13

301
We go back to Network::Socket, and we say, "This is a class that we're definitely going to want

to decorate with other roles a lot. Let's make it easier.” We add MooseX::Traits, and it lets us
do this... we call "with_traits" to get a new class, automatically generated and with an

automatically generated name, and then we call new on that. This will properly validate the
initialization, and we are guaranteed consistent object state again. Yay!

package Network: :Socket;
use Moose;

with 'MooseX::Traits',
"Transmitter: :Complex'

sub send_string { ... }

my $socket = Network::Socket->with_traits(
"Network: :Socket: :Noisy',

"Network: :Socket: :Lazy',
"Network: :Socket: :Surly’,

)->new({

*)

1);

Friday, August 9, 13

301
We go back to Network::Socket, and we say, "This is a class that we're definitely going to want

to decorate with other roles a lot. Let's make it easier.” We add MooseX::Traits, and it lets us
do this... we call "with_traits" to get a new class, automatically generated and with an

automatically generated name, and then we call new on that. This will properly validate the
initialization, and we are guaranteed consistent object state again. Yay!

checkpoint: traits

® a trait is just a role applied to an instance

® you can use Moose::Util::apply all roles

® or MooseX:: Traits

Moose

Friday, August 9, 13 303

Moose! So, we've been using Moose to do all this stuff, now, but | haven't really explained
how any of it works —- only what it does.

7270777 777

799
192229272729 | ?
) 79299292279222222229 79 299
2922222227229 ?
279299
2979 | ?
299 799979
7929229279 P 2292292297979
7272778 27299
EEEEEEE 41 | | 29222722279
? 929 7 Q2272727022 0222222779
2272279429 2979292929272779
12227 7% . 2979927929222779
297979229222 2222229W 22222222222

What is Moose? | promised back at the beginning that this would not be a talk about magic,

but about software. So, how does this software work?

Well, | hate to do it, but | have to go just one level deeper and talk about...

Class::MOP

Friday, August 9, 13 305

What is Class::MOP? It's not, like, for mopping up all the awful crap lying around your code.
It's @ meta-object protocol. If you don't know what they are, the famous text on them is
this...

L o the

Tﬂ§ammnar

Drotoco

Gregor Kiczales
Jim des Riviéres
Daniel G. Bobrow

PR AN SO AP
4& *\
¢ e 5

Friday, August 9, 13 306

"The Art of the Metaobject Protocol”
No joke. This is the actual cover of the book. How awesome is that??

Here's a 10,000 foot up summary.

The Metaobject Protocol

The Metaobject Protocol

® we have an object system

The Metaobject Protocol

® we have an object system

® it has classes, instances, attributes

The Metaobject Protocol

® we have an object system
® it has classes, instances, attributes

® they interact in well-known ways

The Metaobject Protocol

® we have an object system
® it has classes, instances, attributes
® they interact in well-known ways

® we can model this with objects

Friday, August 9, 13 308

Class

Friday, August 9, 13

308

Class

Method

Friday, August 9, 13

308

Class

Method

Attribute

Friday, August 9, 13

308

Class
_ J
T
e A 4 -
s A 4 a
4) s N
4 N\ 4 N
L Method g Attribute
_ J - N _ J
4 N\
4 N
4 N
\
&\ ROIG

Friday, August 9, 13 308

Method

Class
A \
\\\\
Role

Attribute

Friday, August 9, 13

308

Method

Class
A \
\\\\
Role

Attribute

Friday, August 9, 13

308

Method

Class
A \
\\\

Instance

Role

Attribute

Friday, August 9, 13

308

Class
J
A \
4 -\
4 N\
4 N
4 N\
\k\ MethOd
~ N
\
N
.
4) Role
Instance J
_ ‘\)
.
p
p
)
\
_ SIOt

Attribute

Friday, August 9, 13

308

p
p
)
\k\ Method
_
.
Instance
_

Friday, August 9, 13

308

4 N\
4 N
4 N\
\k\ MethOd
_
4 N\
Instance
_ ‘\)
.
p
p
)
\
_ SIOt

-

_

TypeConstraint

~

J

Friday, August 9, 13

308

/ &
[r='ﬁ; = 7
E. ..#/

_\

Friday, August 9, 13

OO for CS

Friday, August 9, 13 310

the parties, the recruiters scouting your homework, the high-paying jobs right out of
graduation...

but anyway, this is the sort of thing | imagine comp sci majors getting for homework...

OO for CS

® full disclosure: | didn't major in comp sci

Friday, August 9, 13 310

the parties, the recruiters scouting your homework, the high-paying jobs right out of
graduation...

but anyway, this is the sort of thing | imagine comp sci majors getting for homework...

OO for CS

® full disclosure: | didn't major in comp sci

® | heard how glamorous it was, and wanted to

Friday, August 9, 13 310

the parties, the recruiters scouting your homework, the high-paying jobs right out of
graduation...

but anyway, this is the sort of thing | imagine comp sci majors getting for homework...

OO for CS

® full disclosure: | didn't major in comp sci
® | heard how glamorous it was, and wanted to

® but opted for the even more glamorous field
of philosophy

Friday, August 9, 13
the parties, the recruiters scouting your homework, the high-paying jobs right out of
graduation...

but anyway, this is the sort of thing | imagine comp sci majors getting for homework...

310

OO for CS

OO for CS

® your homework:

Friday, August 9, 13 311

OO for CS

® your homework:

® build an entirely new OO system

OO for CS

® your homework:
® build an entirely new OO system

® but follow the usual rules

Friday, August 9, 13 311

OO for CS

® your homework:
® build an entirely new OO system
® but follow the usual rules

® (and we'll do it in Moose)

Friday, August 9, 13 311

package (Class;
use Moose;

has name => (
1S => 'ro',
1sa => PackageName,
required => 1,

)

Friday, August 9, 13 312

package Class;
use Moose;

has name => (...);

has instance_methods => (
1s => 'ro',
1sa => Map[Identifier, CodeRef],

default => sub { return {} },
)5

package (Class;
use Moose;

has name => (...);
has instance_methods => (...);

has attributes => (

1S => 'ro',
1sa => Map[

Identifier,

role_type('Attribute’)

1,
) .
)
Friday, August 9, 13

package (Class;
use Moose;

has name => (...);
has 1nstance_methods => (...);
has attributes = (...);

Friday, August 9, 13 315

Now our class looks like a pretty decent start. When we make instances, they'll have behavior
(methods) and slots for state (attributes). Now, how do we make an instance? Easy, we write
a method on Class.

has name => (...);
has instance_methods => (...);
has attributes => (...);

sub new_object {
my ($self, $arg) = @_;
my $obj = Instance->new({ class => $self });

for my $attr (value %{ $self->attributes }) {
$obj->initialize_slot($attr, $arg);

¥

return $obj;

Friday, August 9, 13 316
So, now we have a way to make a new object. What about subclassing?

has name => (...);
has instance_methods => (...);
has attributes = (...);

has superclasses => (
1S => 'ro',
1sa => 'ArrayRef',

)

sub new_object { ... }

Friday, August 9, 13 317

Well, first we need to keep track of whether a class has superclasses, so we add that
attribute.

has name => (...);
has instance_methods => (...);
has attributes => (...);

has superclasses => (
1S => 'ro’,
1sa => 'ArrayRef’,

),
sub new_object { ... }

sub new_subclass {
my ($self) = @_;
return Class->new({
superclasses => [$self]

I ¥
}

Friday, August 9, 13 318

...then we need a way to make a new class with this one as its superclass. So, that's not so
bad. Let's go back to look at what happens when we make a new object in a class....

sub new_object {
my ($self, $arg) = @_;
my $obj = Instance->new({ class => $self });

for my $attr (value %{ $self->attributes }) {
$obj->initialize_slot($attr, $arg);
h

return $obj;

Friday, August 9, 13

We make a new instance —- the empty shell that will become the object -- and then we go

through all our attributes and ask the Instance whether it wants to initialize that attribute.
So, let's look at what Instance looks like.

319

package Instance;

has class => (
1s => 'ro',
1sa => class_type('Class'),
required => 1,

)

Friday, August 9, 13 320

Obviously, we need to know what the class is, so that's easy enough. But then we're going to
need that initialize_slot method that gets called for each attribute.

package Instance;

has class = (...);

sub initialize_slot {
my ($self, $attr, $arg) = @_;

my $attr_name
my $attr_val

$attr->type->assert_valid($attr_val);

$self->guts->{ $attr_name } = $attr_val;

$attr->name;
$arg->{ $attr_name };

Friday, August 9, 13

321

Simple. We check whether the attr accepts the value we got, and we stick it on the object, in

its "guts.” What's that?

package Instance;
has class = (...);
sub initialize_slot { ... }
ha; guts => (
1S => 'ro'

lazy_build => 1,
);

Friday, August 9, 13 322
Well, it's an attribute, and we'll lazy-build it.

Friday, August 9, 13 323

We make a hash. Then we get the name of the class associated with the instance. We do
some extremely low-level magic, and voila! Guts!

But what if we want some other kind of guts. Like, we want an Instance that can't store
invalid attributes. Easy...

sub _build_guts {
my ($self);

my $storage =9{ };
my $class_name

$self->class->name;
bless $storage => $class_name;

return $storage;

Friday, August 9, 13

We make a hash. Then we get the name of the class associated with the instance. We do
some extremely low-level magic, and voila! Guts!

323

But what if we want some other kind of guts. Like, we want an Instance that can't store
invalid attributes. Easy...

package Instance: :Strict;
use Moose;
extends 'Instance’;

sub BUILD {
my ($self) = @_;
my $guts = $self->guts;

lock_keys(%$guts, keys %$guts);
¥

Friday, August 9, 13 324

That's it! We subclass "Instance” and make it lock down the keys to the set that exist
immediately after initialization.

That's MOP!

Friday, August 9, 13 325
Now, the example | just showed you is dramatically simplified from any real MOP, and
obviously left out all kinds of stuff, but you get the idea, right? A MOP models *and
implements* your OO system in an OO system. Generally, it is self-hosting, at least partly.

Class::MOP

Class::MOP

® 3 MOP for Perl 5

Class::MOP

® 3 MOP for Perl 5

® classes, instances

Class::MOP

® 3 MOP for Perl 5

® classes, instances

® attributes, methods

Friday, August 9, 13 326

Class::MOP

® 3 MOP for Perl 5

® classes, instances
® attributes, methods

® method modifiers

Friday, August 9, 13 326

Class:

Class:

Class:

Class:

:MOP :

:MOP :

:MOP:

:MOP :

Class::MOP

:Class

: Instance

:Attribute

:Method

Friday, August 9, 13

These are the actual classes that define how the object system's parts work together.

327

7 722992722292292979

779
1222272777 79 ?
0 7927929292722292792779 299
7729292222722779 ?
77222979
772279 ?
299

27929279

172922279 P 22292222729

797277 . 77779
12292779 7722729999
7779 27727999979
7227779 29727729979
72227779 . 2777272929979
0929929227 222229293 222222222979

So, now, we're ready to say what Moose is.

Moose->1sa('Class: :MOP'")

Friday, August 9, 13 329

Moose is just a set of subclasses of the Class::MOP classes, plus some more concepts that
work the same way.

Moose:

Moose:

Moose:

Moose:

Moose:
Moose:

:Meta:

:Meta:

:Meta:

:Meta:

:Meta:
:Meta:

Moose

:Class 1sa Class:
:Instance 1sa Class:
:Attribute 1sa Class:
:Method 1sa Class:

:Role 1sa Class:
: TypeConstraint isa that, too

:MOP:

:MOP:

:MOP:

:MOP:

:MOP :

:Class
: Instance
:Attribute
:Method

:0bject

Friday, August 9, 13

330

These are the actual classes that define how the object system's parts work together.

package Network: :Socket;
use Moose;

with 'Transmitter’;
has port => (is => 'ro");

Friday, August 9, 13

When you write the code on the top, the code on the bottom is run. This, too, is a
simplification, but a very minor one. This is very, very close to what actually happens. Moose
and Class::MOP do all the work to translate this very high-level abstraction into the real,

grotty, gross underlying Perl code. Those things like "has" and "with" are just VERY VERY thin
sugar over the underlying metaobject methods.

331

Read Moose.pm. It is simple and instructive.

package Network: :Socket;
use Moose;

with 'Transmitter’;
has port => (is => 'ro");

$metaclass = Moose: :Meta: :Class->new(

Friday, August 9, 13

When you write the code on the top, the code on the bottom is run. This, too, is a
simplification, but a very minor one. This is very, very close to what actually happens. Moose
and Class::MOP do all the work to translate this very high-level abstraction into the real,

grotty, gross underlying Perl code. Those things like "has" and "with" are just VERY VERY thin
sugar over the underlying metaobject methods.

331

Read Moose.pm. It is simple and instructive.

package Network: :Socket;
use Moose;

with 'Transmitter’;
has port => (is => 'ro");

$metaclass = Moose: :Meta: :Class->new(
name => 'Network: :Socket',

Friday, August 9, 13

When you write the code on the top, the code on the bottom is run. This, too, is a
simplification, but a very minor one. This is very, very close to what actually happens. Moose
and Class::MOP do all the work to translate this very high-level abstraction into the real,

grotty, gross underlying Perl code. Those things like "has" and "with" are just VERY VERY thin
sugar over the underlying metaobject methods.

331

Read Moose.pm. It is simple and instructive.

package Network: :Socket;
use Moose;

with 'Transmitter’;
has port => (is => 'ro");

$metaclass = Moose: :Meta: :Class->new(
name => 'Network: :Socket',

)

Friday, August 9, 13

When you write the code on the top, the code on the bottom is run. This, too, is a
simplification, but a very minor one. This is very, very close to what actually happens. Moose
and Class::MOP do all the work to translate this very high-level abstraction into the real,

grotty, gross underlying Perl code. Those things like "has" and "with" are just VERY VERY thin
sugar over the underlying metaobject methods.

331

Read Moose.pm. It is simple and instructive.

package Network: :Socket;
use Moose;

with 'Transmitter’;
has port => (is => 'ro");

$metaclass = Moose: :Meta: :Class->new(
name => 'Network: :Socket',

)

my $metarole = find_meta('Transmitter');

Friday, August 9, 13

When you write the code on the top, the code on the bottom is run. This, too, is a

331

simplification, but a very minor one. This is very, very close to what actually happens. Moose

and Class::MOP do all the work to translate this very high-level abstraction into the real,

grotty, gross underlying Perl code. Those things like "has" and "with" are just VERY VERY thin

sugar over the underlying metaobject methods.

Read Moose.pm. It is simple and instructive.

package Network: :Socket;
use Moose;

with 'Transmitter’;
has port => (is => 'ro");

$metaclass = Moose: :Meta: :Class->new(
name => 'Network: :Socket',

)

my $metarole = find_meta('Transmitter');
$metarole->apply($metaclass);

Friday, August 9, 13

When you write the code on the top, the code on the bottom is run. This, too, is a
simplification, but a very minor one. This is very, very close to what actually happens. Moose
and Class::MOP do all the work to translate this very high-level abstraction into the real,

grotty, gross underlying Perl code. Those things like "has" and "with" are just VERY VERY thin
sugar over the underlying metaobject methods.

331

Read Moose.pm. It is simple and instructive.

package Network: :Socket;
use Moose;

with 'Transmitter’;
has port => (is => 'ro");

name => 'Network: :Socket',

)

$metarole->apply($metaclass);

$metaclass->add_attribute(port =>

$metaclass = Moose: :Meta: :Class->new(

my $metarole = find_meta('Transmitter');

)5

Friday, August 9, 13

When you write the code on the top, the code on the bottom is run. This, too, is a

331

simplification, but a very minor one. This is very, very close to what actually happens. Moose

and Class::MOP do all the work to translate this very high-level abstraction into the real,

grotty, gross underlying Perl code. Those things like "has" and "with" are just VERY VERY thin

sugar over the underlying metaobject methods.

Read Moose.pm. It is simple and instructive.

checkpoint: MOP

checkpoint: MOP

® a2 MOP models an OO system with an OO
system

checkpoint: MOP

® a2 MOP models an OO system with an OO
system

® you can change how the OO system works
by writing subclasses of metaclasses

checkpoint: MOP

® a2 MOP models an OO system with an OO
system

® you can change how the OO system works
by writing subclasses of metaclasses

® Moose is a powerful MOP for Perl 5

¢ -
* ND

Friday, August 9, 13 333
| spent a lot of time thinking that | could totally skip the idea of showing you the underlying
MOP and explaining what it's there for. You're not likely to interact with it directly, at least
not until you've gotten pretty comfortable with using Moose's normal, core features.

¢ -
* ND

Friday, August 9, 13 334

...but | kept thinking about my promise that you would not leave here thinking that this is a
lot of magic. Truth be told, the MOP code is very, very complex, but it's hardly magic at all.
It's a lot more like plumbing. Lots of working with dangerous tools in tight places that smell
really, really bad. It wasn't necessarily fun to put together, but having all that plumbing
available makes your life a lot more comfortable.

¢ -
* ND

Friday, August 9, 13 335
Anyway, now | want to get back to talking about really cool stuff you can do with Moose.

Now that you know what the heck it's doing under the hood, it should be pretty easy to follow
what's going on.

Native lraits

package CPAN::Distribution;

has prereqgs => (
1s => 'ro',
1sa => ArrayRef[PackageName],

default => sub { [] },
DK

Friday, August 9, 13

has prereqgs => (
1s => 'ro',
1sa => ArrayRef[PackageName],

default => sub { [] 1},
),

my $dist = CPAN::Dist->new({
preregs => ['Thing::Plugin:0Auth']
});

Friday, August 9, 13
So, we said this would fail, being a bogus module name.

has prereqgs => (
1s => 'ro',
1sa => ArrayRef[PackageName],

default => sub { [] 1},
),

my $dist = CPAN::Dist->new({
preregs => ['Thing::Plugin::0Auth']
P

Friday, August 9, 13

...but this is okay.

my $dist = CPAN::Dist->new({
prereqgs => ['Thing::Plugin::0Auth']
£);

$dist->prereqs # 77?77

Friday, August 9, 13
Here's the big problem, though. What does this return? It returns a reference to an
anonymous array with absolutely no overloading or tying.

That means that somebody can do this...

has preregs => (
1s => 'ro',
1sa => ArrayRef[PackageName],

default => sub { [] 1},
),

my $dist = CPAN::Dist->new({
prereqs => ['Thing::Plugin: :0Auth’]
P

$dist->preregs->[1] = "Some Junk";

Friday, August 9, 13

and that will work! AAAauuuuugh!

and remember: (is => 'ro') only means that you can't use the ->prereqs method to alter the

value —- it doesn't mean that any reference is made recursively readonly! We can still set,
delete, splice, and otherwise totally corrupt the object state.

package CPAN::Distribution;

has preregs => (
1s => 'ro',
1sa => ArrayRef[PackageName],
default => sub { [] },

traits => ["Array'],

Friday, August 9, 13 342

Look! Another thing we can tell "has"! Well, we know what a trait is, right? A trait is a role
that applies to an instance (object) rather than a class. The value of "preregs” isn't an object,
so we can't be applying a trait to it.

Instead, we're applying a trait to the underlying Attribute object, and that trait will change the
way it behaves as an attribute. In this case, Array is shorthand for
Moose::Meta::Attribute::Native::Trait::Array and the way it alters the attribute object is...

package CPAN::Distribution;

has preregs => (
1s => 'ro',
1sa => ArrayRef[PackageName],
default => sub { [] },
traits => ["Array'],
handles => {

add_prereq => 'push’,

5y

);

Friday, August 9, 13 343
The change is that we can act like the underlying reference has methods, even though it's a
native Perl type and not an object. So, where we used to be doing this:

my $dist = CPAN::Dist->new({
prereqs => ['Thing::Plugin::0Auth’]

1)

$dist->preregs->[1] = "Some Junk";

Friday, August 9, 13
(or this) both of which are (a) ugly and (b) violate encapsulation and (c) break type

constraints
we can now do this! it's a real method that looks like part of your API (because it is) and lets

you use modifiers, subclassing, and anything else. Another piece of great news...

my $dist = CPAN::Dist->new({
prereqs => ['Thing::Plugin::0Auth’]
5);

$dist->preregs->[1] = "Some Junk";

push @{$dist->prereqs}, "Some Junk";

Friday, August 9, 13

(or this) both of which are (a) ugly and (b) violate encapsulation and (c) break type
constraints

we can now do this! it's a real method that looks like part of your API (because it is) and lets

you use modifiers, subclassing, and anything else. Another piece of great news...

my $dist = CPAN::Dist->new({
prereqs => ['Thing::Plugin::0Auth’]
5);

$dist->preregs->[1] = "Some Junk";

push @{$dist->prereqs}, "Some Junk";

$dist->add_prereq("Some Junk");

Friday, August 9, 13

(or this) both of which are (a) ugly and (b) violate encapsulation and (c) break type
constraints

we can now do this! it's a real method that looks like part of your API (because it is) and lets

you use modifiers, subclassing, and anything else. Another piece of great news...

my $dist = CPAN::Dist->new({

prereqs => ['Thing::Plugin::0Auth’]
13

$dist->preregs->[1] = "Some Junk";

push @{$dist->preregs}, "Some Junk";

$dist->add_prereq("Some Junk");

Friday, August 9, 13

The first two succeed —- INCORRECTLY.
The third one will CORRECTLY throw an exception for the type violation.

We don't even want this to POSSIBLE, though. We don't want anybody to have such easy
access to the object's guts like that. So, we just do this...

package CPAN::Distribution;

has preregs => (
1s => 'ro',
1sa => ArrayRef[PackageName],
default => sub { [] },
traits => ["Array'],
handles => {

add_prereq => 'push’,

5y

);

Friday, August 9, 13

we go back to the attribute definition. that (is => 'ro’) is what's giving us the "prereqgs”
method; we don't really need it, because we can write "handles” entries to get all the
behavior we want. we just remove it.

package CPAN::Distribution;

has preregs => (
1sa => ArrayRef[PackageName],
default => sub { [] },
traits => ["Array'],
handles => {
add_prereq => 'push’,
¥y
);

Friday, August 9, 13
noO more accessor!

what are the behaviors of our methods now?

my $dist = CPAN::Dist->new({
prereqs => ['Thing::Plugin::0Auth’]
5);

$dist->preregs->[1] = "Some Junk";

push @{$dist->preregs}, "Some Junk";

$dist->add_prereq("Some Junk");

Friday, August 9, 13
They all fail! That's just what we want!

The first two fail because there is no such method as "preregs” and the third because of type

constraints. And if we use VALID input...

my $dist = CPAN::Dist->new({
prereqs => ['Thing::Plugin::0Auth’]
5);

$dist->preregs->[1] = "Some: :Junk";

push @{$dist->prereqs}, "Some::Junk";

$dist->add_prereqg("Some: :Junk");

Friday, August 9, 13 349

...we still don't let people into our guts just because they're going to do okay things. Only
the valid method is allowed, and because the input is good, too, it works.

package CPAN::Distribution;

has prereqgs => (
1sa => Map[PackageName, LaxVersionStr],
default => sub { {} 1,
traits => ['Hash'],
handles => {
add_prereq =>

[
)

set

$dist->set_prereq("Some: :Junk" => 1.2);

Friday, August 9, 13 350
Some of you might remember that earlier | had used this CPAN::Distribution example to show
off the Map type, where we could type both the keys and the values. We can still do that!
Here, we will be constrained on both the keys and the values in our map.

Array

® push, pop
® shift, unshift

® map, grep, sort

® etc.

Hash

® get, set, delete
® cXists, defined
® clear,is_empty

® etc.

Friday, August 9, 13

String

® append, prepend
® substr

® |ength

® etc.

Bool

® set
® unset

® toggle

Friday, August 9, 13

Code

® eXxecute

® execute method

Friday, August 9, 13 355

The code native type is REALLY simple, but | think it's worth taking a little digression here to
talk about how useful that "execute_method" behavior can be.

package Network: :Service;
use Moose;

has xmitter => (

|| ||

1s => 'ro',
does => 'Transmitter',
lazy => 1,

builder => "_build_xmitter',
clearer => '_clear_xmitter',

Friday, August 9, 13
We're going to write some service that needs a transmitter, and we want to built it lazily.

package Network::Service;
use Moose;

has xmitter => (

|| ||

1s => 'ro',
does => 'Transmitter’,
lazy => 1,

handles => 'Transmitter',
builder => '_build_xmitter',
clearer => '_clear_xmitter',

3
~"
-

Friday, August 9, 13
The thing is, we don't want to write our own builder method. We want to let users supply

their own transmitter.

my $service = Network: :Service->new({
xmitter => $some_transmitter,

1)

Friday, August 9, 13 358
So, this is easy, no problem. The issue is that we know that a lot of the transmitter types we
might want to use are really expensive to build, or might time out, so we don't want to create
them until we absolutely have to. We don't really have a means to do that, so far. But it's

easy!

package Network::Service;
use Moose;

has xmitter => (
1s => 'ro',
does => 'Transmitter’,
handles => 'Transmitter',

lazy_build => 1,

3
~"
-~

Friday, August 9, 13

We didn't want to write that transmitter builder, because we want to let the user supply it.
Well, we can!

package Network::Service;
use Moose;

has xmitter => (

|| ||

1S => 'ro',
does => 'Transmitter’,
handles => 'Transmitter',
lazy_build => 1,

);

has xmitter_builder => (
1sa => 'CodeRef',
required => 1,
traits => ["Code'],
handles => {
_build_xmitter => 'execute_method',

¥

Friday, August 9, 13 360

Now we accept a callback from the user, and it becomes a method! Specifically, it becomes a
builder method for our lazy_build attribute. The user can now write...

my $service = Network: :Service->new({
xmitter_builder => sub {
Expensive: :Xmitter->new;

},

I DK

Friday, August 9, 13
...and we won't actually call that builder until someone tries to USE the transmitter.

checkpoint: native traits

checkpoint: native traits

® "traits’ argument to "has" lets us apply
traits to the attribute object

checkpoint: native traits

® "traits’ argument to "has" lets us apply
traits to the attribute object

® Moose comes with traits to let unblessed
references delegate to virtual methods

Friday, August 9, 13

checkpoint: native traits

® "traits’ argument to "has" lets us apply
traits to the attribute object

® Moose comes with traits to let unblessed
references delegate to virtual methods

® by using these native traits, we help ensure
type safety and cleaner interfaces

Friday, August 9, 13

Moose X

Friday, August 9, 13 363

So, now we've seen MooseX::Traits and MooseX:: Types. There are hundreds of modules
under the MooseX namespace. What is it?

Nobody knows.

Friday, August 9, 13 364
Seriously. It's like "pragma” in Perl 5. What's a pragma? There are sort of vague ideas, but
no clear test. MooseX is the same way. MooseX modules are supposed to be about
enhancing or extending the way that Moose works -- but just because something is written
with Moose, or is a Moose role, it doesn't necessarily belong in MooseX. A lot of MooseX
libraries act like metaobject traits, though, which can be a big indicator that we're in talking

about MooseX.

It doesn't matter, anyway.

Friday, August 9, 13

365
This section is just going to be about stuff that happens to be in MooseX:: or is otherwise
really useful for working with Moose. I'll mention how some of them work, just to keep

things interesting, but the point is that these are tools you can use, and they're examples of
tools you can build if you need to.

Parameterized Roles

Friday, August 9, 13 366
the traits paper talked about "requires” being for parameters; what did that mean?

package Role: :Logger;
use Moose: :Role;

requires ‘'emit’;
sub log {
my ($self, $level, $message) = @_;

return unless $level >= $self->level;
$self->emit($message);

¥

has level => (...);

no Moose: :Role;

Friday, August 9, 13 367
Everybody remember the above? Specifically how we required "emit" for our logger to work?

So -- and bear with me, here -- when we say the above, it is almost identical in meaning and
effect to the following...

has emit_callback => (
1sd => 'CodeRef',
traits = ['Code'],
handles => { emit => 'execute_method' },
1nit_arg => undef,
default => sub { $_[0]->can('emit") },

)

sub log {
my ($self, $level, $message) = @_;
return unless $level >= $self->level;
$self->emit($message);

¥

Friday, August 9, 13 368
Don't panic, let's walk through this. We need to have an "emit callback” attribute, which must
be a coderef. Delegate our "emit" to its "execute_method" via native traits, so we appear to
have a "emit" method that is provided by the callback provided on object initialization. We
don't let you supply one, and there's no accessor, so the default always wins. It looks for an
"emit" method, and it will find it on the class using this role.

has emit_callback => (
1sd => 'CodeRef',
traits = ['Code'],
handles => { emit => 'execute_method' },
1nit_arg => undef,
default => sub { $_[0]->can('emit") },

)

sub log {
my ($self, $level, $message) = @_;
return unless $level >= $self->level;
$self->emit($message);

¥

Friday, August 9, 13
So this is close to equivalent to "requires 'emit"™ but requiring emit is compile time safe
because we check for the "emit" method at method composition time instead of when we

make the first object.

This is a pretty complicated example! Let's imagine a simpler one.

369

package Pipe::Streamer;
use Moose: :Role;

requires 'pipe_name';

sub stream_to_pipe {
my ($self, $message) = @_;
open my $fh, '>', $self->pipe_name;
$fh->print($message);
}

Friday, August 9, 13 370

This looks really similar, right? But there's a really big, important difference. All we're
getting from pipe_name is a simple constant. Imagine this case...

package Pipe::Streamer;
use Moose: :Role;

requires 'pipe_name';

sub stream_to_pipe {
my ($self, $message) = @_;
open my $fh, '>', $self->pipe_name;
$fh->print($message);
}

package Server: :Nethack;
with 'Pipe::Streamer’';
sub pipe_name { '/var/run/nethack.log’' }

Friday, August 9, 13

This looks really similar, right? But there's a really big, important difference. All we're

getting from pipe_name is a simple constant. Imagine this case...

370

Friday, August 9, 13 371

GROSS!

It's totally gross. First of all, it's just ugly. Secondly, now we've got all these public methods
that don't really contribute to the role we're trying to PROVIDE only to the role we're trying to
CONSUME! What if instead, we could say...

package Network::Client;

Friday, August 9, 13 371

GROSS!

It's totally gross. First of all, it's just ugly. Secondly, now we've got all these public methods
that don't really contribute to the role we're trying to PROVIDE only to the role we're trying to
CONSUME! What if instead, we could say...

package Network::Client;
use Moose;

Friday, August 9, 13 371

GROSS!

It's totally gross. First of all, it's just ugly. Secondly, now we've got all these public methods
that don't really contribute to the role we're trying to PROVIDE only to the role we're trying to
CONSUME! What if instead, we could say...

package Network::Client;
use Moose;

with '"AutoSocket';

Friday, August 9, 13 371

GROSS!

It's totally gross. First of all, it's just ugly. Secondly, now we've got all these public methods
that don't really contribute to the role we're trying to PROVIDE only to the role we're trying to
CONSUME! What if instead, we could say...

package Network::Client;
use Moose;

with '"AutoSocket';

sub socket_port { 80 }

Friday, August 9, 13 371

GROSS!

It's totally gross. First of all, it's just ugly. Secondly, now we've got all these public methods
that don't really contribute to the role we're trying to PROVIDE only to the role we're trying to
CONSUME! What if instead, we could say...

package Network::Client;
use Moose;

with '"AutoSocket';

sub socket_port { 80 }
sub socket_dest { '127.0.0.1" }

Friday, August 9, 13 371

GROSS!

It's totally gross. First of all, it's just ugly. Secondly, now we've got all these public methods
that don't really contribute to the role we're trying to PROVIDE only to the role we're trying to
CONSUME! What if instead, we could say...

package Network::Client;
use Moose;

with "AutoSocket';

sub socket_port { 80 }
sub socket_dest { '127.

sub socket_src { '127.

0.0.1" }
0.0.2" }

Friday, August 9, 13 371

GROSS!

It's totally gross. First of all, it's just ugly. Secondly, now we've got all these public methods
that don't really contribute to the role we're trying to PROVIDE only to the role we're trying to
CONSUME! What if instead, we could say...

with

package Network::Client;
use Moose;

"AutoSocket’;

sub socket_port { 80 }

sub socket_dest { '127.0.0.1" }
sub socket_src { '127.0.0.2" }
sub socket_type { "INET' }

It's totally gross. First of all, it's just ugly. Secondly, now we've got all these public methods
that don't really contribute to the role we're trying to PROVIDE only to the role we're trying to
CONSUME! What if instead, we could say...

Supb
Sup

sub
sub

sub

with

package Network::Client;
use Moose;

"AutoSocket’;

SOC
SOC

SOC
SOC

SOC

ket_port { 80 }

ket_dest { '127.0.0.1
cket_src { '127.0.0.
cet_type { "INET' }

ket_prot { 'TCP' }

1"}
2"}

Friday, August 9, 13

GROSS!

371

It's totally gross. First of all, it's just ugly. Secondly, now we've got all these public methods
that don't really contribute to the role we're trying to PROVIDE only to the role we're trying to
CONSUME! What if instead, we could say...

sub
sub
sub
sub
sub
sub

with

package Network::Client;
use Moose;

"AutoSocket’;

SOC
SOC
SOC
SOC
SOC
SOC

ket_port { 80 }

ket_dest { '127.0.0.1" }
ket_src { '127.0.0.2' }
cet_type { "INET' }
ket_prot { 'TCP' }

ket_timeout { 60 }

Friday, August 9, 13

GROSS!

371

It's totally gross. First of all, it's just ugly. Secondly, now we've got all these public methods
that don't really contribute to the role we're trying to PROVIDE only to the role we're trying to
CONSUME! What if instead, we could say...

package Network::Client;
use Moose;

with "AutoSocket' => {
port => 80,
dest => '127.0.0.1",
src => '127.0.0.2",
type => "INET',
prot = 'TCP',
timeout => 60,

s

Friday, August 9, 13 372
Now we're telling the parameters DIRECTLY to the role, and we're doing it at composition
time. Win! Now, can we do this?

Yes! We're going to use MooseX::Role::Parameterized

package AutoSocket;
use MooseX: :Role: :Parameterized;

parameter [gw(src dest) | => (
1Sa => IPAddress,
required => 1,

)

parameter type => (
1sd => SocketType,
required => 1,

)

package AutoSocket;
use MooseX: :Role: :Parameterized;

parameter [gw(src dest)] => (...);
parameter type => (...);

role {
my $param = shift;

has socket => (lazy_build => ...);

method _build_socket => sub {
my ($self) =
return Network: :Socket->new({
src => $param->src,
type => $param->type,
£);
¥
55

Friday, August 9, 13 374

So, take this in. The "role" block describes how to build a role, *at composition time*, using
the parameters given. So this allows *exactly* the syntax | pined for earlier...

package Network::Client;
use Moose;

with "AutoSocket' => {
port => 80,
dest => '127.0.0.1",
src => '127.0.0.2",
type => "INET',
prot = 'TCP',
timeout => 60,

s

Friday, August 9, 13 375
we pass these parameters in to the parameterized role....

package AutoSocket;
use MooseX: :Role: :Parameterized;

parameter [gw(src dest)] => (...);
parameter type => (...);

role {
my $param = shift;

has socket => (lazy_build => ...);

method _build_socket => sub {
my ($self) =
return Network: :Socket->new({
src => $param->src,
type => $param->type,
£);
¥
55

Friday, August 9, 13
and imagine how this $param object is then being used

but there is EVEN MORE WIN! ...

376

package Network::Client;

use Moose;

with '"AutoSocket';

sub socket_port { 80 }

sub socket_dest { '127.0.0.1" }
sub socket_src { '127.0.0.2" }
sub socket_type { "INET' }

sub socket_prot { 'TCP' }

sub socket_timeout { 60 }

Friday, August 9, 13

When we were using this awful style of non-parameterized role, what did the role code look

like?

377

package AutoSocket;
use Moose: :Role;

requires 'socket_port';
requires 'socket_dest’;

requires 'socket_src’;

requires 'socket_type';
requires 'socket_prot';
requires 'socket_timeout';
Friday, August 9, 13 378

How does this ensure that the methods return the right kind of thing? IT CANT!
Perl has no subroutine signatures, and even the stuff we saw to add them *doesn't type
return values*. We don't know if the type is valid until we try using it. Possibly that's very

very late!
Well, what did we do with MXRP?

package AutoSocket;
use MooseX: :Role: :Parameterized;

parameter [gw(src dest)] => (
1sd => IPAddress,
required => 1,

)

parameter type => (

1sd => SocketType,
required => 1,
default => 'TCP'

) ;

Friday, August 9, 13

We defined the role's parameters like attributes! With types!

379

When we try to compose with an invalid role parameter, WE WILL FAIL AT COMPILE TIME

instead of maybe failing at runtime or maybe just having broken behavior! Awesome. We
can even add defaults!

more validation

package Greeter;
use Moose;
use MooseX: :Params: :Validate;

sub greet {
my ($self, %param) = validated_hash(
\@_,

name => { 1sa => 'Str' },
age => { 1sa => 'Int' },

)

$self->emit(
"Hello $param{who}, I am $param{age} years old!"

)

Friday, August 9, 13 381

Perl traditionally has really lousy handling of method signatures and parameter handling.
Moose, natively, does nothing about it. There are a bunch of libraries that try to deal with the
problem. One of them is MooseX::Params::Validate, which gives us the traditional
Params::Validate interface, using Moose types.

package Greeter;
use Moose;
use MooseX: :Method: :Signatures;

method greet (Str :$who, Int :$age where { $_ > 0 }) {
$self->emit("Hello $who, I am $age years old!");

¥

Friday, August 9, 13 382
MooseX::Method::Signatures, obviously, goes a lot further. It hooks into the Perl parsing
process to allow new constructs like those seen here. We get $self for free, inline type
constraints, variables declared into our scope, and more... and no source filters.

use MooseX: :Declare;
class Greeter extends Employee with Transmitter {

method greet (Str :$who, Int :%$age where {$_ > 0}) {
$self->emit("Hello $who, I am $age years old!");

¥
¥

Friday, August 9, 13 383

MooseX::Declare takes that even further, providing a significantly altered syntax for class
declaration as well.

package Rectangle;
use Moose;

has height => (1is => 'ro');
has width => (is => 'ro');

Friday, August 9, 13 384

So, we have some really simple class with two attributes. Later, we use it and we're thinking,
"Hey, who would possibly create a Rectangle class without allowing us to say what color?" So
we use color, and you know what happens? Nothing. Itisn't an error to pass extra

arguments. In fact, they get passed to BUILD, so in rare cases it can be useful to accept
them.

package Rectangle;
use Moose;

has height => (is => 'ro');
has width => (is => 'ro');

my $rect = Rectangle->nhew(
height => 10,
width => 20,
color => 'red',

)

Friday, August 9, 13 384

So, we have some really simple class with two attributes. Later, we use it and we're thinking,
"Hey, who would possibly create a Rectangle class without allowing us to say what color?" So
we use color, and you know what happens? Nothing. Itisn't an error to pass extra

arguments. In fact, they get passed to BUILD, so in rare cases it can be useful to accept
them.

package Rectangle;
use Moose;
use MooseX: :StrictConstructor;

has height => (is => 'ro');
has width => (is => 'ro');

my $rect = Rectangle->nhew(
height => 10,
width => 20,
color => 'red',

)

Friday, August 9, 13 385

Usually, though, it isn't, so using MooseX::StrictConstructor will make this an error! this is a
pretty darn useful module, and can prevent a lot of stupid bugs

naming conventions

package Hero;
use Moose;

has motto => (i1s => 'ro');

my $hero = Hero->new(motto => "Spoon!");
say $hero->motto;

$hero->motto("Not in the face!");

Friday, August 9, 13 387

Normally, the simplest way to get an attribute is to just say whether it's read-only or read-
write and get an accessor. It's pretty good default, because that's the Perl standard practice.

Provide separate read and write accessors.

Best Practices

O'REILLY"

Friday, August 9, 13

but apparently the *best* practice is this (if you want to take programming advice from a

dog)

388

package Hero;
use Moose;

use MooseX: :FollowPBP;

has motto => (i1s => 'ro');

my $hero = Hero->new(motto => "Spoon!");
say $hero->get_motto;

$hero->set_motto("Not in the face!");

Friday, August 9, 13

That's it!

389

And if you have different feelings about how attributes should work by default, there are

other options. You can always write your own policy like this, or you might find luck with
MooseX::SemiAffordanceAccessor...

package Hero;
use Moose;
use MooseX: :SemiAffordanceAccessor;

has motto => (i1s => 'ro');

my $hero = Hero->new(motto => "Spoon!");

say $hero->motto;

$hero->set_motto("Not in the face!");

Friday, August 9, 13 390
The getter is the attr name, but the setter is "set_attrname”

design (anti?)patterns

Friday, August 9, 13 391

Here are some libraries that let you use some common design elements that... maybe you
shouldn't.

package Global: :DBH;
use MooseX: :Singleton;

has connection => (

1s => 'ro',
1sa => 'DBI::db',
lazy => 1,

default => sub { DBI->connect(..) },
);

my $dbh = Global: :DBH->connection;

package SyslLogger;
use Moose;
use MooseX: :ClassAttribute;

has facility => (
1S => 'ro',
1sa => enum([gw(mail daemon news)]),
builder => 'default_facility',

)

class_has default_facility => (
1S => "rw',
1sa => enum([gw(mail daemon news)]),

default => 'daemon',

)

Friday, August 9, 13

Singleton & ClassAttribute

Singleton & ClassAttribute

® can be good in very limited circumstances

Singleton & ClassAttribute

® can be good in very limited circumstances

® remember:

Singleton & ClassAttribute

® can be good in very limited circumstances
® remember:

® if you like class attributes...

Singleton & ClassAttribute

® can be good in very limited circumstances
® remember:
® if you like class attributes...

® you like singletons; if you like those...

Singleton & ClassAttribute

® can be good in very limited circumstances
® remember:

® if you like class attributes...

® you like singletons; if you like those...

® you like global variables

Useful Roles

Friday, August 9, 13 395
People upload classes to the CPAN all the time. Why not roles? There aren't all that many
roles on the CPAN yet, but we're see more and more of them over time. Here are some of the
roles | use the most often.

package Signal: :Abort;
use Moose;

with 'Throwable';

has reason => (
1s => 'ro',
1sa => 'Str',
required => 1,

)

Signal: :Abort->throw({ reason => 'Bored' });

Friday, August 9, 13 396
Throwable is dead simple. It gives us a "throw" method that acts just like "new" and then
throws the object as an exception (using Perl's "die" buit-in). So, obviously, this is great for
making simple exception classes. If you're using this for error handling...

package Permission: :Error;
use Moose;
extends 'Throwable: :Error';

J

has who => (is = 'ro', ...);

Friday, August 9, 13 397

This lets us write quick exception classes that have messages *and stack traces*, and we can
easily add attributes to them, because it's Moose!

It's a lot like Exception::Class, but without using a half-baked bespoke attribute declaration
system.

package Permission: :Error;
use Moose;

extends 'Throwable: :Error';

has who => (is => 'ro', ...);

Permission: :Error->throw({

message => "tried to leave Village",

who => "'McGoohan"

1)

Friday, August 9, 13

397
This lets us write quick exception classes that have messages *and stack traces*, and we can
easily add attributes to them, because it's Moose!

It's a lot like Exception::Class, but without using a half-baked bespoke attribute declaration
system.

package Permission: :Error;
use Moose;

extends 'Throwable: :Error';

has who => (is => 'ro', ...);

Permission: :Error->throw({
message

who => "'McGoohan"

1)

=> "tried to leave Village",

Permission: :Error->throw("no auth!");

Friday, August 9, 13

397
This lets us write quick exception classes that have messages *and stack traces*, and we can

easily add attributes to them, because it's Moose!

It's a lot like Exception::Class, but without using a half-baked bespoke attribute declaration
system.

package File: :Processor;

use Moose;
with 'MooseX: :Getopt';

has verbose => (

1s => "rw',
1sa => 'Bool’',
required => 1,
traits => ['Getopt'],
cmd_aliases => 'v',
)3
has 1nput => (
1s => 'rw',
1sa => 'Str',

)

Friday, August 9, 13

398

package File: :Processor;
use Moose;
with 'MooseX::Getopt';

has verbose => (

1s => "rw',
1sa => 'Bool’,
required => 1,
traits => ['Getopt'],
cmd_aliases => 'v',
)3
has 1nput => (
1s => 'rw',
1sa => 'Str',

)

use File: :Processor;
my $proc = File::Processor->new_with_options;
$proc->...;

Friday, August 9, 13 398

package File: :Processor;

use Moose;
with 'MooseX: :Getopt';

has verbose => (

1S => "rw',
1sa => 'Bool’',
required => 1,
traits => ['Getopt'
cmd_aliases => 'v',

)3

has 1nput => (
1s => 'rw',
1sa => 'Str',

)

1,

$ procfiles -v --input

myfile.txt

Friday, August 9, 13

399

integrating with other systems

package LWP::UserAgent::Safe;
use Moose;

use MooseX: :NonMoose;

extends 'LWP::UserAgent';

before [gw(get head post)] => sub {
my ($self, $url) = @_;

Permission: :Error->throw("NO!"™)
1f $url =~ m{//www.php.net/};

o

__PACKAGE__->meta->make_immutable;

y, August I,
NonMoose lets us use Moose to (often) safely extended non-Moose classes with Moose

package LWP::UserAgent::Safe;
use Moose;

use MooseX: :NonMoose;

extends 'LWP::UserAgent';

before [gw(get head post)] => sub {
my ($self, $url) = @_;

Permission: :Error->throw("NO!"™)
1f $url =~ m{//www.php.net/};

o

__PACKAGE__->meta->make_immutable;

iaay, AUgus ,
You need this. It makes lots of the NonMoose stuff work at all.

use Reflex::Interval;

my $t = Reflex::Interval->new(

1nterval => 1,

auto_repeat => 1,

on_tick => sub { say "timer ticked" },
);

$t->run_all;

Friday, August 9, 13 403

Friday, August 9, 13

Isn't Moose a little...
...Slow?

s Moose slow?

s Moose slow?

® compile time can be a noticeable hit
® 0.25s or more

® runtime is pretty fast, but...

® be sure you compare apples to apples

"Moose is so slow!"

"Moose is so slow!"

® | rewrote my library with Moose...

Friday, August 9, 13
"Moose sucks!”

"Moose is so slow!"

® | rewrote my library with Moose...

® | added type constraints and coersions...

Friday, August 9, 13
"Moose sucks!”

"Moose is so slow!"

® "| rewrote my library with Moose...
® | added type constraints and coersions...

® | refactored to use a lot of delegates...

Friday, August 9, 13
"Moose sucks!”

"Moose is so slow!"

® | rewrote my library with Moose...
® | added type constraints and coersions...
® | refactored to use a lot of delegates...

® And attributes with native traits...

Friday, August 9, 13
"Moose sucks!”

"Moose is so slow!"

® | rewrote my library with Moose...

® | added type constraints and coersions...
® | refactored to use a lot of delegates...

® And attributes with native traits...

® _.and now everything is slow!”

Friday, August 9, 13
"Moose sucks!”

The more you use, the
more It COsts.

Friday, August 9, 13 407
The cost that you can't strip down as easily is the compile-time cost. There are two solutions
to this. One is to start up less often: use more long-running services. This is a good practice
for lots of reasons, anyway.

Some people, though, turn to Moo.

OO0

Friday, August 9, 13

"Minimalist Object Orientation”

(see also Mouse, "Moose
Without the Antlers")

Moose Moo / Mouse

Friday, August 9, 13

Moose Moo / Mouse

MOP

Friday, August 9, 13

Moose Moo / Mouse

SUGAR

MOP

Moose Moo / Mouse

SUGAR

MOP

Moose Moo / Mouse

SUGAR

MOP Antlers

Moose Moo / Mouse

SUGAR

MOP Antlers

package CPAN: :Dist;
use Mouse;

has preregs => (
1S => 'ro',
1sa => 'HashRef',
traits => ['Hash'],
lazy => 1,
default => sub { ... },

handles => {
set_prereq =>

[
)

set’,

...and not a whole lot else.

package CPAN: :Dist;
use Moo;

has preregs => (

J J

1s => 'ro',

1sa =>
sub { !'blessed && ref eq 'HASH' },
lLazy => 1,

default => sub { ... }
);

...and not a whole lot else.

Friday, August 9, 13

$moose_obj->meta; # Moose: :Meta: :Class
$mouse_obj->meta; # Mouse: :Meta: :Class

$moo___obj->meta; # Moo::HandleMoose: :FakeMetaClass

Friday, August 9, 13

U+00SE

COMBINING
MOOSE ANTLERS
ABOVE

Any
Questions!

